Copied to
clipboard

G = D12.7D4order 192 = 26·3

7th non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.7D4, Dic6.7D4, M4(2).6D6, C3:C8.27D4, D12.C4.C2, C4.153(S3xD4), (C2xQ8).32D6, C12.100(C2xD4), C4.10D4:4S3, C3:1(D4.5D4), C8.D6.1C2, C12.53D4:4C2, C6.12(C4:D4), (C2xC12).12C23, C4oD12.8C22, (C6xQ8).10C22, C12.47D4:12C2, C2.15(Dic3:D4), Q8.11D6.1C2, C4.Dic3.7C22, C22.16(C4oD12), (C2xDic6).48C22, (C3xM4(2)).23C22, (C2xC3:Q16):1C2, (C2xC3:C8).4C22, (C2xC6).33(C4oD4), (C3xC4.10D4):2C2, (C2xC4).12(C22xS3), SmallGroup(192,314)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.7D4
C1C3C6C12C2xC12C4oD12D12.C4 — D12.7D4
C3C6C2xC12 — D12.7D4
C1C2C2xC4C4.10D4

Generators and relations for D12.7D4
 G = < a,b,c,d | a12=b2=1, c4=a6, d2=a9, bab=a-1, cac-1=a7, ad=da, cbc-1=a6b, dbd-1=a3b, dcd-1=a9c3 >

Subgroups: 272 in 100 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, C12, D6, C2xC6, C2xC8, M4(2), M4(2), SD16, Q16, C2xQ8, C2xQ8, C4oD4, C3:C8, C3:C8, C24, Dic6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xQ8, C4.10D4, C4.10D4, C8.C4, C8oD4, C2xQ16, C8.C22, S3xC8, C8:S3, C24:C2, Dic12, C2xC3:C8, C4.Dic3, Q8:2S3, C3:Q16, C3xM4(2), C2xDic6, C4oD12, C6xQ8, D4.5D4, C12.53D4, C12.47D4, C3xC4.10D4, D12.C4, C8.D6, Q8.11D6, C2xC3:Q16, D12.7D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C4:D4, C4oD12, S3xD4, D4.5D4, Dic3:D4, D12.7D4

Character table of D12.7D4

 class 12A2B2C34A4B4C4D4E6A6B8A8B8C8D8E8F8G12A12B12C12D24A24B24C24D
 size 11212222812242444668122444888888
ρ1111111111111111111111111111    trivial
ρ2111111111-111-1-1-1-1-1-111111-1-1-1-1    linear of order 2
ρ3111-11111-1-11111-1-11-1-111111111    linear of order 2
ρ4111-11111-1111-1-111-11-11111-1-1-1-1    linear of order 2
ρ51111111-11111-1-1-1-11-1-111-1-1-111-1    linear of order 2
ρ61111111-11-1111111-11-111-1-11-1-11    linear of order 2
ρ7111-1111-1-1-111-1-11111111-1-1-111-1    linear of order 2
ρ8111-1111-1-111111-1-1-1-1111-1-11-1-11    linear of order 2
ρ92220-122-200-1-12200-200-1-111-111-1    orthogonal lifted from D6
ρ1022-222-220-202-200000002-2000000    orthogonal lifted from D4
ρ1122-2-22-220202-200000002-2000000    orthogonal lifted from D4
ρ1222-2022-20002-200-2-2020-22000000    orthogonal lifted from D4
ρ132220-122-200-1-1-2-200200-1-1111-1-11    orthogonal lifted from D6
ρ1422-2022-20002-200220-20-22000000    orthogonal lifted from D4
ρ152220-122200-1-1-2-200-200-1-1-1-11111    orthogonal lifted from D6
ρ162220-122200-1-12200200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1722202-2-2000222i-2i00000-2-200-2i002i    complex lifted from C4oD4
ρ1822202-2-200022-2i2i00000-2-2002i00-2i    complex lifted from C4oD4
ρ192220-1-2-2000-1-1-2i2i0000011--3-3-i-33i    complex lifted from C4oD12
ρ202220-1-2-2000-1-12i-2i0000011--3-3i3-3-i    complex lifted from C4oD12
ρ212220-1-2-2000-1-1-2i2i0000011-3--3-i3-3i    complex lifted from C4oD12
ρ222220-1-2-2000-1-12i-2i0000011-3--3i-33-i    complex lifted from C4oD12
ρ2344-40-2-44000-220000000-22000000    orthogonal lifted from S3xD4
ρ2444-40-24-4000-2200000002-2000000    orthogonal lifted from S3xD4
ρ254-400400000-400022-2200000000000    symplectic lifted from D4.5D4, Schur index 2
ρ264-400400000-4000-222200000000000    symplectic lifted from D4.5D4, Schur index 2
ρ278-800-40000040000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of D12.7D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 22)(14 21)(15 20)(16 19)(17 18)(23 24)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)(37 45)(38 44)(39 43)(40 42)(46 48)(49 57)(50 56)(51 55)(52 54)(58 60)(61 63)(64 72)(65 71)(66 70)(67 69)(73 82)(74 81)(75 80)(76 79)(77 78)(83 84)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 29 18 84 7 35 24 78)(2 36 19 79 8 30 13 73)(3 31 20 74 9 25 14 80)(4 26 21 81 10 32 15 75)(5 33 22 76 11 27 16 82)(6 28 23 83 12 34 17 77)(37 58 93 61 43 52 87 67)(38 53 94 68 44 59 88 62)(39 60 95 63 45 54 89 69)(40 55 96 70 46 49 90 64)(41 50 85 65 47 56 91 71)(42 57 86 72 48 51 92 66)
(1 70 10 67 7 64 4 61)(2 71 11 68 8 65 5 62)(3 72 12 69 9 66 6 63)(13 50 22 59 19 56 16 53)(14 51 23 60 20 57 17 54)(15 52 24 49 21 58 18 55)(25 95 34 92 31 89 28 86)(26 96 35 93 32 90 29 87)(27 85 36 94 33 91 30 88)(37 75 46 84 43 81 40 78)(38 76 47 73 44 82 41 79)(39 77 48 74 45 83 42 80)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,45)(38,44)(39,43)(40,42)(46,48)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,82)(74,81)(75,80)(76,79)(77,78)(83,84)(86,96)(87,95)(88,94)(89,93)(90,92), (1,29,18,84,7,35,24,78)(2,36,19,79,8,30,13,73)(3,31,20,74,9,25,14,80)(4,26,21,81,10,32,15,75)(5,33,22,76,11,27,16,82)(6,28,23,83,12,34,17,77)(37,58,93,61,43,52,87,67)(38,53,94,68,44,59,88,62)(39,60,95,63,45,54,89,69)(40,55,96,70,46,49,90,64)(41,50,85,65,47,56,91,71)(42,57,86,72,48,51,92,66), (1,70,10,67,7,64,4,61)(2,71,11,68,8,65,5,62)(3,72,12,69,9,66,6,63)(13,50,22,59,19,56,16,53)(14,51,23,60,20,57,17,54)(15,52,24,49,21,58,18,55)(25,95,34,92,31,89,28,86)(26,96,35,93,32,90,29,87)(27,85,36,94,33,91,30,88)(37,75,46,84,43,81,40,78)(38,76,47,73,44,82,41,79)(39,77,48,74,45,83,42,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,45)(38,44)(39,43)(40,42)(46,48)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,82)(74,81)(75,80)(76,79)(77,78)(83,84)(86,96)(87,95)(88,94)(89,93)(90,92), (1,29,18,84,7,35,24,78)(2,36,19,79,8,30,13,73)(3,31,20,74,9,25,14,80)(4,26,21,81,10,32,15,75)(5,33,22,76,11,27,16,82)(6,28,23,83,12,34,17,77)(37,58,93,61,43,52,87,67)(38,53,94,68,44,59,88,62)(39,60,95,63,45,54,89,69)(40,55,96,70,46,49,90,64)(41,50,85,65,47,56,91,71)(42,57,86,72,48,51,92,66), (1,70,10,67,7,64,4,61)(2,71,11,68,8,65,5,62)(3,72,12,69,9,66,6,63)(13,50,22,59,19,56,16,53)(14,51,23,60,20,57,17,54)(15,52,24,49,21,58,18,55)(25,95,34,92,31,89,28,86)(26,96,35,93,32,90,29,87)(27,85,36,94,33,91,30,88)(37,75,46,84,43,81,40,78)(38,76,47,73,44,82,41,79)(39,77,48,74,45,83,42,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,22),(14,21),(15,20),(16,19),(17,18),(23,24),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35),(37,45),(38,44),(39,43),(40,42),(46,48),(49,57),(50,56),(51,55),(52,54),(58,60),(61,63),(64,72),(65,71),(66,70),(67,69),(73,82),(74,81),(75,80),(76,79),(77,78),(83,84),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,29,18,84,7,35,24,78),(2,36,19,79,8,30,13,73),(3,31,20,74,9,25,14,80),(4,26,21,81,10,32,15,75),(5,33,22,76,11,27,16,82),(6,28,23,83,12,34,17,77),(37,58,93,61,43,52,87,67),(38,53,94,68,44,59,88,62),(39,60,95,63,45,54,89,69),(40,55,96,70,46,49,90,64),(41,50,85,65,47,56,91,71),(42,57,86,72,48,51,92,66)], [(1,70,10,67,7,64,4,61),(2,71,11,68,8,65,5,62),(3,72,12,69,9,66,6,63),(13,50,22,59,19,56,16,53),(14,51,23,60,20,57,17,54),(15,52,24,49,21,58,18,55),(25,95,34,92,31,89,28,86),(26,96,35,93,32,90,29,87),(27,85,36,94,33,91,30,88),(37,75,46,84,43,81,40,78),(38,76,47,73,44,82,41,79),(39,77,48,74,45,83,42,80)]])

Matrix representation of D12.7D4 in GL8(F73)

11000000
720000000
00110000
007200000
00001002
00000120
0000072720
0000720072
,
11000000
072000000
0072720000
00010000
00001000
000007200
00000110
0000720072
,
67016320000
06741570000
5741600000
3216060000
00005716041
00005716320
00001605716
00000575716
,
5741600000
3216060000
67016320000
06741570000
0000020206
00005306753
000010360
00007063067

G:=sub<GL(8,GF(73))| [1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,1,72,0,0,0,0,0,0,2,72,0,0,0,0,0,2,0,0,72],[1,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,1,0,0,72,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72],[67,0,57,32,0,0,0,0,0,67,41,16,0,0,0,0,16,41,6,0,0,0,0,0,32,57,0,6,0,0,0,0,0,0,0,0,57,57,16,0,0,0,0,0,16,16,0,57,0,0,0,0,0,32,57,57,0,0,0,0,41,0,16,16],[57,32,67,0,0,0,0,0,41,16,0,67,0,0,0,0,6,0,16,41,0,0,0,0,0,6,32,57,0,0,0,0,0,0,0,0,0,53,10,70,0,0,0,0,20,0,3,63,0,0,0,0,20,67,6,0,0,0,0,0,6,53,0,67] >;

D12.7D4 in GAP, Magma, Sage, TeX

D_{12}._7D_4
% in TeX

G:=Group("D12.7D4");
// GroupNames label

G:=SmallGroup(192,314);
// by ID

G=gap.SmallGroup(192,314);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,555,184,297,136,1684,851,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=1,c^4=a^6,d^2=a^9,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^6*b,d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^3>;
// generators/relations

Export

Character table of D12.7D4 in TeX

׿
x
:
Z
F
o
wr
Q
<