Copied to
clipboard

G = D247C4order 192 = 26·3

7th semidirect product of D24 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D247C4, Dic127C4, M4(2).27D6, C33(C8○D8), C3⋊C8.38D4, C24⋊C26C4, C8.16(C4×S3), C6.56(C4×D4), C8.C48S3, C24.35(C2×C4), (C8×Dic3)⋊1C2, C4○D24.5C2, C4.213(S3×D4), (C2×C8).252D6, D12.C411C2, D12.11(C2×C4), C12.372(C2×D4), D12⋊C412C2, C12.55(C22×C4), (C2×C24).42C22, Dic6.11(C2×C4), (C2×C12).311C23, C4○D12.18C22, C2.16(Dic35D4), C22.2(Q83S3), (C4×Dic3).235C22, (C3×M4(2)).29C22, C4.47(S3×C2×C4), (C3×C8.C4)⋊5C2, (C2×C6).2(C4○D4), (C2×C3⋊C8).238C22, (C2×C4).414(C22×S3), SmallGroup(192,454)

Series: Derived Chief Lower central Upper central

C1C12 — D247C4
C1C3C6C12C2×C12C4○D12C4○D24 — D247C4
C3C6C12 — D247C4
C1C4C2×C4C8.C4

Generators and relations for D247C4
 G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a17, cbc-1=a22b >

Subgroups: 272 in 106 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C3⋊C8, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, S3×C8, C8⋊S3, C24⋊C2, D24, Dic12, C2×C3⋊C8, C4×Dic3, C2×C24, C3×M4(2), C4○D12, C8○D8, C8×Dic3, D12⋊C4, C3×C8.C4, C4○D24, D12.C4, D247C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, S3×C2×C4, S3×D4, Q83S3, C8○D8, Dic35D4, D247C4

Smallest permutation representation of D247C4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 27)(2 26)(3 25)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)
(1 19 13 7)(2 12 14 24)(3 5 15 17)(4 22 16 10)(6 8 18 20)(9 11 21 23)(25 37)(26 30)(27 47)(28 40)(29 33)(31 43)(32 36)(34 46)(35 39)(38 42)(41 45)(44 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,19,13,7)(2,12,14,24)(3,5,15,17)(4,22,16,10)(6,8,18,20)(9,11,21,23)(25,37)(26,30)(27,47)(28,40)(29,33)(31,43)(32,36)(34,46)(35,39)(38,42)(41,45)(44,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,27)(2,26)(3,25)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28), (1,19,13,7)(2,12,14,24)(3,5,15,17)(4,22,16,10)(6,8,18,20)(9,11,21,23)(25,37)(26,30)(27,47)(28,40)(29,33)(31,43)(32,36)(34,46)(35,39)(38,42)(41,45)(44,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,27),(2,26),(3,25),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28)], [(1,19,13,7),(2,12,14,24),(3,5,15,17),(4,22,16,10),(6,8,18,20),(9,11,21,23),(25,37),(26,30),(27,47),(28,40),(29,33),(31,43),(32,36),(34,46),(35,39),(38,42),(41,45),(44,48)]])

42 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B8A8B8C8D8E8F8G8H8I8J8K8L8M8N12A12B12C24A24B24C24D24E24F24G24H
order12222344444444466888888888888881212122424242424242424
size1121212211266661212242222333344446622444448888

42 irreducible representations

dim1111111112222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D4D6D6C4○D4C4×S3C8○D8S3×D4Q83S3D247C4
kernelD247C4C8×Dic3D12⋊C4C3×C8.C4C4○D24D12.C4C24⋊C2D24Dic12C8.C4C3⋊C8C2×C8M4(2)C2×C6C8C3C4C22C1
# reps1121124221212248114

Matrix representation of D247C4 in GL4(𝔽73) generated by

10000
02200
0001
007272
,
07200
72000
0001
0010
,
27000
07200
0010
007272
G:=sub<GL(4,GF(73))| [10,0,0,0,0,22,0,0,0,0,0,72,0,0,1,72],[0,72,0,0,72,0,0,0,0,0,0,1,0,0,1,0],[27,0,0,0,0,72,0,0,0,0,1,72,0,0,0,72] >;

D247C4 in GAP, Magma, Sage, TeX

D_{24}\rtimes_7C_4
% in TeX

G:=Group("D24:7C4");
// GroupNames label

G:=SmallGroup(192,454);
// by ID

G=gap.SmallGroup(192,454);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,555,58,136,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^17,c*b*c^-1=a^22*b>;
// generators/relations

׿
×
𝔽