Extensions 1→N→G→Q→1 with N=S3×C4○D4 and Q=C2

Direct product G=N×Q with N=S3×C4○D4 and Q=C2
dρLabelID
C2×S3×C4○D448C2xS3xC4oD4192,1520

Semidirect products G=N:Q with N=S3×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C4○D4)⋊1C2 = S3×C4○D8φ: C2/C1C2 ⊆ Out S3×C4○D4484(S3xC4oD4):1C2192,1326
(S3×C4○D4)⋊2C2 = SD16⋊D6φ: C2/C1C2 ⊆ Out S3×C4○D4484(S3xC4oD4):2C2192,1327
(S3×C4○D4)⋊3C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out S3×C4○D4248+(S3xC4oD4):3C2192,1331
(S3×C4○D4)⋊4C2 = D84D6φ: C2/C1C2 ⊆ Out S3×C4○D4488-(S3xC4oD4):4C2192,1332
(S3×C4○D4)⋊5C2 = D24⋊C22φ: C2/C1C2 ⊆ Out S3×C4○D4488+(S3xC4oD4):5C2192,1336
(S3×C4○D4)⋊6C2 = C6.C25φ: C2/C1C2 ⊆ Out S3×C4○D4484(S3xC4oD4):6C2192,1523
(S3×C4○D4)⋊7C2 = S3×2+ 1+4φ: C2/C1C2 ⊆ Out S3×C4○D4248+(S3xC4oD4):7C2192,1524
(S3×C4○D4)⋊8C2 = D6.C24φ: C2/C1C2 ⊆ Out S3×C4○D4488-(S3xC4oD4):8C2192,1525
(S3×C4○D4)⋊9C2 = S3×2- 1+4φ: C2/C1C2 ⊆ Out S3×C4○D4488-(S3xC4oD4):9C2192,1526
(S3×C4○D4)⋊10C2 = D12.39C23φ: C2/C1C2 ⊆ Out S3×C4○D4488+(S3xC4oD4):10C2192,1527

Non-split extensions G=N.Q with N=S3×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C4○D4).1C2 = S3×C4≀C2φ: C2/C1C2 ⊆ Out S3×C4○D4244(S3xC4oD4).1C2192,379
(S3×C4○D4).2C2 = C423D6φ: C2/C1C2 ⊆ Out S3×C4○D4484(S3xC4oD4).2C2192,380
(S3×C4○D4).3C2 = M4(2)⋊28D6φ: C2/C1C2 ⊆ Out S3×C4○D4484(S3xC4oD4).3C2192,1309
(S3×C4○D4).4C2 = S3×C8.C22φ: C2/C1C2 ⊆ Out S3×C4○D4488-(S3xC4oD4).4C2192,1335
(S3×C4○D4).5C2 = S3×C8○D4φ: trivial image484(S3xC4oD4).5C2192,1308

׿
×
𝔽