Copied to
clipboard

G = S3×2- 1+4order 192 = 26·3

Direct product of S3 and 2- 1+4

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: S3×2- 1+4, C6.17C25, C12.52C24, D6.15C24, D12.38C23, Dic6.39C23, Dic3.12C24, C4○D415D6, (C2×Q8)⋊27D6, Q8○D1212C2, (C2×C6).8C24, C4.49(S3×C23), C2.18(S3×C24), (S3×Q8)⋊17C22, (C6×Q8)⋊24C22, (S3×D4).8C22, C3⋊D4.4C23, C33(C2×2- 1+4), C4○D1214C22, (C4×S3).21C23, Q8.15D67C2, (C3×D4).32C23, D4.32(C22×S3), C22.5(S3×C23), (C3×Q8).33C23, Q8.43(C22×S3), D42S317C22, (C2×C12).123C23, Q83S316C22, (C2×Dic6)⋊45C22, (C3×2- 1+4)⋊4C2, (C22×S3).251C23, (C2×Dic3).170C23, (C2×S3×Q8)⋊22C2, (S3×C4○D4)⋊9C2, (C3×C4○D4)⋊12C22, (S3×C2×C4).174C22, (C2×C4).107(C22×S3), SmallGroup(192,1526)

Series: Derived Chief Lower central Upper central

C1C6 — S3×2- 1+4
C1C3C6D6C22×S3S3×C2×C4C2×S3×Q8 — S3×2- 1+4
C3C6 — S3×2- 1+4
C1C22- 1+4

Generators and relations for S3×2- 1+4
 G = < a,b,c,d,e,f | a3=b2=c4=d2=1, e2=f2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef-1=c2e >

Subgroups: 1512 in 794 conjugacy classes, 445 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, D6, D6, D6, C2×C6, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C22×Q8, C2×C4○D4, 2- 1+4, 2- 1+4, C2×Dic6, S3×C2×C4, C4○D12, S3×D4, D42S3, S3×Q8, Q83S3, C6×Q8, C3×C4○D4, C2×2- 1+4, C2×S3×Q8, Q8.15D6, S3×C4○D4, Q8○D12, C3×2- 1+4, S3×2- 1+4
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2- 1+4, C25, S3×C23, C2×2- 1+4, S3×C24, S3×2- 1+4

Smallest permutation representation of S3×2- 1+4
On 48 points
Generators in S48
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 29 34)(6 30 35)(7 31 36)(8 32 33)(9 25 42)(10 26 43)(11 27 44)(12 28 41)(21 37 46)(22 38 47)(23 39 48)(24 40 45)
(9 25)(10 26)(11 27)(12 28)(13 18)(14 19)(15 20)(16 17)(21 37)(22 38)(23 39)(24 40)(29 34)(30 35)(31 36)(32 33)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 6)(2 5)(3 8)(4 7)(9 23)(10 22)(11 21)(12 24)(13 29)(14 32)(15 31)(16 30)(17 35)(18 34)(19 33)(20 36)(25 39)(26 38)(27 37)(28 40)(41 45)(42 48)(43 47)(44 46)
(1 4 3 2)(5 6 7 8)(9 10 11 12)(13 16 15 14)(17 20 19 18)(21 24 23 22)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 40 39 38)(41 42 43 44)(45 48 47 46)
(1 44 3 42)(2 41 4 43)(5 45 7 47)(6 46 8 48)(9 16 11 14)(10 13 12 15)(17 27 19 25)(18 28 20 26)(21 32 23 30)(22 29 24 31)(33 39 35 37)(34 40 36 38)

G:=sub<Sym(48)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,29,34)(6,30,35)(7,31,36)(8,32,33)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45), (9,25)(10,26)(11,27)(12,28)(13,18)(14,19)(15,20)(16,17)(21,37)(22,38)(23,39)(24,40)(29,34)(30,35)(31,36)(32,33), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,6)(2,5)(3,8)(4,7)(9,23)(10,22)(11,21)(12,24)(13,29)(14,32)(15,31)(16,30)(17,35)(18,34)(19,33)(20,36)(25,39)(26,38)(27,37)(28,40)(41,45)(42,48)(43,47)(44,46), (1,4,3,2)(5,6,7,8)(9,10,11,12)(13,16,15,14)(17,20,19,18)(21,24,23,22)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,40,39,38)(41,42,43,44)(45,48,47,46), (1,44,3,42)(2,41,4,43)(5,45,7,47)(6,46,8,48)(9,16,11,14)(10,13,12,15)(17,27,19,25)(18,28,20,26)(21,32,23,30)(22,29,24,31)(33,39,35,37)(34,40,36,38)>;

G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,29,34)(6,30,35)(7,31,36)(8,32,33)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45), (9,25)(10,26)(11,27)(12,28)(13,18)(14,19)(15,20)(16,17)(21,37)(22,38)(23,39)(24,40)(29,34)(30,35)(31,36)(32,33), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,6)(2,5)(3,8)(4,7)(9,23)(10,22)(11,21)(12,24)(13,29)(14,32)(15,31)(16,30)(17,35)(18,34)(19,33)(20,36)(25,39)(26,38)(27,37)(28,40)(41,45)(42,48)(43,47)(44,46), (1,4,3,2)(5,6,7,8)(9,10,11,12)(13,16,15,14)(17,20,19,18)(21,24,23,22)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,40,39,38)(41,42,43,44)(45,48,47,46), (1,44,3,42)(2,41,4,43)(5,45,7,47)(6,46,8,48)(9,16,11,14)(10,13,12,15)(17,27,19,25)(18,28,20,26)(21,32,23,30)(22,29,24,31)(33,39,35,37)(34,40,36,38) );

G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,29,34),(6,30,35),(7,31,36),(8,32,33),(9,25,42),(10,26,43),(11,27,44),(12,28,41),(21,37,46),(22,38,47),(23,39,48),(24,40,45)], [(9,25),(10,26),(11,27),(12,28),(13,18),(14,19),(15,20),(16,17),(21,37),(22,38),(23,39),(24,40),(29,34),(30,35),(31,36),(32,33)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,6),(2,5),(3,8),(4,7),(9,23),(10,22),(11,21),(12,24),(13,29),(14,32),(15,31),(16,30),(17,35),(18,34),(19,33),(20,36),(25,39),(26,38),(27,37),(28,40),(41,45),(42,48),(43,47),(44,46)], [(1,4,3,2),(5,6,7,8),(9,10,11,12),(13,16,15,14),(17,20,19,18),(21,24,23,22),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,40,39,38),(41,42,43,44),(45,48,47,46)], [(1,44,3,42),(2,41,4,43),(5,45,7,47),(6,46,8,48),(9,16,11,14),(10,13,12,15),(17,27,19,25),(18,28,20,26),(21,32,23,30),(22,29,24,31),(33,39,35,37),(34,40,36,38)]])

51 conjugacy classes

class 1 2A2B···2F2G2H2I···2M 3 4A···4J4K···4T6A6B···6F12A···12J
order122···2222···234···44···466···612···12
size112···2336···622···26···624···44···4

51 irreducible representations

dim11111122248
type+++++++++--
imageC1C2C2C2C2C2S3D6D62- 1+4S3×2- 1+4
kernelS3×2- 1+4C2×S3×Q8Q8.15D6S3×C4○D4Q8○D12C3×2- 1+42- 1+4C2×Q8C4○D4S3C1
# reps15510101151021

Matrix representation of S3×2- 1+4 in GL6(𝔽13)

0120000
1120000
001000
000100
000010
000001
,
0120000
1200000
001000
000100
000010
000001
,
100000
010000
005000
000500
005080
001508
,
100000
010000
0080100
0081011
008050
00100112
,
1200000
0120000
008000
001500
000080
002085
,
100000
010000
008200
000500
00129810
0012805

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,5,1,0,0,0,5,0,5,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,8,8,10,0,0,0,1,0,0,0,0,10,0,5,1,0,0,0,11,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,1,0,2,0,0,0,5,0,0,0,0,0,0,8,8,0,0,0,0,0,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,12,12,0,0,2,5,9,8,0,0,0,0,8,0,0,0,0,0,10,5] >;

S3×2- 1+4 in GAP, Magma, Sage, TeX

S_3\times 2_-^{1+4}
% in TeX

G:=Group("S3xES-(2,2)");
// GroupNames label

G:=SmallGroup(192,1526);
// by ID

G=gap.SmallGroup(192,1526);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,297,136,851,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=1,e^2=f^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c^2*e>;
// generators/relations

׿
×
𝔽