# Extensions 1→N→G→Q→1 with N=C2×A4 and Q=D4

Direct product G=N×Q with N=C2×A4 and Q=D4
dρLabelID
C2×D4×A424C2xD4xA4192,1497

Semidirect products G=N:Q with N=C2×A4 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×A4)⋊1D4 = C2×C4⋊S4φ: D4/C4C2 ⊆ Out C2×A424(C2xA4):1D4192,1470
(C2×A4)⋊2D4 = C2×A4⋊D4φ: D4/C22C2 ⊆ Out C2×A424(C2xA4):2D4192,1488

Non-split extensions G=N.Q with N=C2×A4 and Q=D4
extensionφ:Q→Out NdρLabelID
(C2×A4).1D4 = A4⋊Q16φ: D4/C4C2 ⊆ Out C2×A4486-(C2xA4).1D4192,957
(C2×A4).2D4 = C82S4φ: D4/C4C2 ⊆ Out C2×A4246(C2xA4).2D4192,960
(C2×A4).3D4 = A4⋊D8φ: D4/C4C2 ⊆ Out C2×A4246+(C2xA4).3D4192,961
(C2×A4).4D4 = C24.4D6φ: D4/C4C2 ⊆ Out C2×A448(C2xA4).4D4192,971
(C2×A4).5D4 = C24.3D6φ: D4/C22C2 ⊆ Out C2×A448(C2xA4).5D4192,970
(C2×A4).6D4 = C24.5D6φ: D4/C22C2 ⊆ Out C2×A424(C2xA4).6D4192,972
(C2×A4).7D4 = A4⋊SD16φ: D4/C22C2 ⊆ Out C2×A4246(C2xA4).7D4192,973
(C2×A4).8D4 = D4⋊S4φ: D4/C22C2 ⊆ Out C2×A4246+(C2xA4).8D4192,974
(C2×A4).9D4 = A42Q16φ: D4/C22C2 ⊆ Out C2×A4486-(C2xA4).9D4192,975
(C2×A4).10D4 = Q83S4φ: D4/C22C2 ⊆ Out C2×A4246(C2xA4).10D4192,976
(C2×A4).11D4 = C25.S3φ: D4/C22C2 ⊆ Out C2×A424(C2xA4).11D4192,991
(C2×A4).12D4 = A4×C22⋊C4φ: trivial image24(C2xA4).12D4192,994
(C2×A4).13D4 = A4×C4⋊C4φ: trivial image48(C2xA4).13D4192,995
(C2×A4).14D4 = A4×D8φ: trivial image246+(C2xA4).14D4192,1014
(C2×A4).15D4 = A4×SD16φ: trivial image246(C2xA4).15D4192,1015
(C2×A4).16D4 = A4×Q16φ: trivial image486-(C2xA4).16D4192,1016

׿
×
𝔽