Extensions 1→N→G→Q→1 with N=C4 and Q=Q82S3

Direct product G=N×Q with N=C4 and Q=Q82S3
dρLabelID
C4×Q82S396C4xQ8:2S3192,584

Semidirect products G=N:Q with N=C4 and Q=Q82S3
extensionφ:Q→Aut NdρLabelID
C41(Q82S3) = C126SD16φ: Q82S3/C3⋊C8C2 ⊆ Aut C496C4:1(Q8:2S3)192,644
C42(Q82S3) = C125SD16φ: Q82S3/D12C2 ⊆ Aut C496C4:2(Q8:2S3)192,642
C43(Q82S3) = Q82D12φ: Q82S3/C3×Q8C2 ⊆ Aut C496C4:3(Q8:2S3)192,586

Non-split extensions G=N.Q with N=C4 and Q=Q82S3
extensionφ:Q→Aut NdρLabelID
C4.1(Q82S3) = C6.D16φ: Q82S3/C3⋊C8C2 ⊆ Aut C496C4.1(Q8:2S3)192,50
C4.2(Q82S3) = C6.Q32φ: Q82S3/C3⋊C8C2 ⊆ Aut C4192C4.2(Q8:2S3)192,51
C4.3(Q82S3) = C12.9Q16φ: Q82S3/C3⋊C8C2 ⊆ Aut C4192C4.3(Q8:2S3)192,638
C4.4(Q82S3) = C12.SD16φ: Q82S3/C3⋊C8C2 ⊆ Aut C4192C4.4(Q8:2S3)192,639
C4.5(Q82S3) = C12.D8φ: Q82S3/C3⋊C8C2 ⊆ Aut C496C4.5(Q8:2S3)192,647
C4.6(Q82S3) = C8.Dic6φ: Q82S3/D12C2 ⊆ Aut C4484C4.6(Q8:2S3)192,46
C4.7(Q82S3) = D248C4φ: Q82S3/D12C2 ⊆ Aut C4484C4.7(Q8:2S3)192,47
C4.8(Q82S3) = C12.5Q16φ: Q82S3/D12C2 ⊆ Aut C4192C4.8(Q8:2S3)192,105
C4.9(Q82S3) = C12.10D8φ: Q82S3/D12C2 ⊆ Aut C4192C4.9(Q8:2S3)192,106
C4.10(Q82S3) = D125Q8φ: Q82S3/D12C2 ⊆ Aut C496C4.10(Q8:2S3)192,643
C4.11(Q82S3) = C12.47D8φ: Q82S3/C3×Q8C2 ⊆ Aut C4192C4.11(Q8:2S3)192,41
C4.12(Q82S3) = C4.D24φ: Q82S3/C3×Q8C2 ⊆ Aut C496C4.12(Q8:2S3)192,44
C4.13(Q82S3) = Q84Dic6φ: Q82S3/C3×Q8C2 ⊆ Aut C4192C4.13(Q8:2S3)192,579
C4.14(Q82S3) = C12.39SD16central extension (φ=1)192C4.14(Q8:2S3)192,39
C4.15(Q82S3) = D122C8central extension (φ=1)96C4.15(Q8:2S3)192,42
C4.16(Q82S3) = C12.26Q16central extension (φ=1)192C4.16(Q8:2S3)192,94

׿
×
𝔽