metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8⋊2S3, C6.9D4, C4.3D6, C3⋊3SD16, D12.2C2, C12.3C22, C3⋊C8⋊3C2, (C3×Q8)⋊1C2, C2.6(C3⋊D4), SmallGroup(48,17)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊2S3
G = < a,b,c,d | a4=c3=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, dbd=a-1b, dcd=c-1 >
Character table of Q8⋊2S3
class | 1 | 2A | 2B | 3 | 4A | 4B | 6 | 8A | 8B | 12A | 12B | 12C | |
size | 1 | 1 | 12 | 2 | 2 | 4 | 2 | 6 | 6 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | 2 | -2 | -1 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 0 | -1 | 2 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | 0 | 0 | 1 | -√-3 | √-3 | complex lifted from C3⋊D4 |
ρ9 | 2 | 2 | 0 | -1 | -2 | 0 | -1 | 0 | 0 | 1 | √-3 | -√-3 | complex lifted from C3⋊D4 |
ρ10 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | -√-2 | √-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ11 | 2 | -2 | 0 | 2 | 0 | 0 | -2 | √-2 | -√-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ12 | 4 | -4 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(2 4)(5 9)(6 12)(7 11)(8 10)(13 20)(14 19)(15 18)(16 17)(21 24)(22 23)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (2,4)(5,9)(6,12)(7,11)(8,10)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (2,4)(5,9)(6,12)(7,11)(8,10)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(2,4),(5,9),(6,12),(7,11),(8,10),(13,20),(14,19),(15,18),(16,17),(21,24),(22,23)]])
G:=TransitiveGroup(24,36);
Q8⋊2S3 is a maximal subgroup of
S3×SD16 Q8⋊3D6 Q16⋊S3 D24⋊C2 Q8.11D6 D4⋊D6 Q8.13D6 Q8⋊2D9 Q8⋊D9 Dic6⋊S3 C32⋊5SD16 C32⋊11SD16 C6.6S4 Q8⋊3S4 Q8.5S4 C20.D6 C15⋊SD16 Q8⋊2D15 C42.D4 C21⋊SD16 Q8⋊2D21 He3⋊SD16 C33⋊6SD16 C33⋊3SD16
Q8⋊2S3 is a maximal quotient of
C12.Q8 C6.D8 Q8⋊2Dic3 Q8⋊2D9 Dic6⋊S3 C32⋊5SD16 C32⋊11SD16 Q8⋊3S4 C20.D6 C15⋊SD16 Q8⋊2D15 C42.D4 C21⋊SD16 Q8⋊2D21 C33⋊6SD16 C33⋊3SD16
Matrix representation of Q8⋊2S3 ►in GL4(ℤ) generated by
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
-1 | 1 | 0 | -1 |
-1 | 0 | 1 | -1 |
0 | -1 | 1 | -1 |
1 | -1 | 1 | 0 |
0 | -1 | 0 | 0 |
1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | 1 | -1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 |
G:=sub<GL(4,Integers())| [0,0,-1,0,0,0,0,-1,1,0,0,0,0,1,0,0],[-1,-1,0,1,1,0,-1,-1,0,1,1,1,-1,-1,-1,0],[0,1,0,0,-1,-1,0,0,0,0,0,1,0,0,-1,-1],[0,1,0,0,1,0,0,0,0,0,0,-1,0,0,-1,0] >;
Q8⋊2S3 in GAP, Magma, Sage, TeX
Q_8\rtimes_2S_3
% in TeX
G:=Group("Q8:2S3");
// GroupNames label
G:=SmallGroup(48,17);
// by ID
G=gap.SmallGroup(48,17);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,61,46,182,97,42,804]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^3=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of Q8⋊2S3 in TeX
Character table of Q8⋊2S3 in TeX