Copied to
clipboard

G = D24:8C4order 192 = 26·3

8th semidirect product of D24 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D24:8C4, C8.22D12, C24.38D4, Dic12:8C4, C12.3SD16, C8.1(C4xS3), C4.Q8:1S3, (C2xC6).30D8, (C2xC8).41D6, C3:1(D8:2C4), C24.21(C2xC4), C4.1(D6:C4), C4oD24.6C2, (C2xC12).88D4, C12.C8:4C2, C6.4(D4:C4), C12.1(C22:C4), (C2xC24).47C22, C22.8(D4:S3), C4.7(Q8:2S3), C2.6(C6.D8), (C3xC4.Q8):1C2, (C2xC4).16(C3:D4), SmallGroup(192,47)

Series: Derived Chief Lower central Upper central

C1C24 — D24:8C4
C1C3C6C12C2xC12C2xC24C4oD24 — D24:8C4
C3C6C12C24 — D24:8C4
C1C2C2xC4C2xC8C4.Q8

Generators and relations for D24:8C4
 G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a19, cbc-1=a15b >

Subgroups: 208 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, C12, D6, C2xC6, C16, C4:C4, C2xC8, D8, SD16, Q16, C4oD4, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C4.Q8, M5(2), C4oD8, C3:C16, C24:C2, D24, Dic12, C3xC4:C4, C2xC24, C4oD12, D8:2C4, C12.C8, C3xC4.Q8, C4oD24, D24:8C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, D6:C4, D4:S3, Q8:2S3, D8:2C4, C6.D8, D24:8C4

Character table of D24:8C4

 class 12A2B2C34A4B4C4D4E6A6B6C8A8B8C12A12B12C12D12E12F16A16B16C16D24A24B24C24D
 size 112242228824222224448888121212124444
ρ1111111111111111111111111111111    trivial
ρ2111-111111-1111111111111-1-1-1-11111    linear of order 2
ρ3111-1111-1-1-111111111-1-1-1-111111111    linear of order 2
ρ41111111-1-1111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ511-1111-1i-i-1-11-1-1-111-1ii-i-ii-ii-i1-11-1    linear of order 4
ρ611-1-111-1-ii1-11-1-1-111-1-i-iiii-ii-i1-11-1    linear of order 4
ρ711-1111-1-ii-1-11-1-1-111-1-i-iii-ii-ii1-11-1    linear of order 4
ρ811-1-111-1i-i1-11-1-1-111-1ii-i-i-ii-ii1-11-1    linear of order 4
ρ92220-122-2-20-1-1-1222-1-111110000-1-1-1-1    orthogonal lifted from D6
ρ102220-122220-1-1-1222-1-1-1-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ112220222000222-2-2-22200000000-2-2-2-2    orthogonal lifted from D4
ρ1222-2022-2000-22-222-22-200000000-22-22    orthogonal lifted from D4
ρ1322202-2-2000222000-2-20000-2-2220000    orthogonal lifted from D8
ρ1422202-2-2000222000-2-2000022-2-20000    orthogonal lifted from D8
ρ1522-20-12-20001-1122-2-113-33-300001-11-1    orthogonal lifted from D12
ρ1622-20-12-20001-1122-2-11-33-3300001-11-1    orthogonal lifted from D12
ρ1722-20-12-22i-2i01-11-2-22-11-i-iii0000-11-11    complex lifted from C4xS3
ρ1822-20-12-2-2i2i01-11-2-22-11ii-i-i0000-11-11    complex lifted from C4xS3
ρ1922-202-22000-22-2000-220000--2-2-2--20000    complex lifted from SD16
ρ2022-202-22000-22-2000-220000-2--2--2-20000    complex lifted from SD16
ρ212220-122000-1-1-1-2-2-2-1-1-3--3--3-300001111    complex lifted from C3:D4
ρ222220-122000-1-1-1-2-2-2-1-1--3-3-3--300001111    complex lifted from C3:D4
ρ234440-2-4-4000-2-2-200022000000000000    orthogonal lifted from D4:S3, Schur index 2
ρ2444-40-2-440002-220002-2000000000000    orthogonal lifted from Q8:2S3
ρ254-4004000000-40-2-22-2000000000000-2-202-2    complex lifted from D8:2C4
ρ264-4004000000-402-2-2-20000000000002-20-2-2    complex lifted from D8:2C4
ρ274-400-200000-2-322-3-2-22-200000000000-6-26--2    complex faithful
ρ284-400-2000002-32-2-3-2-22-2000000000006-2-6--2    complex faithful
ρ294-400-2000002-32-2-32-2-2-200000000000-6--26-2    complex faithful
ρ304-400-200000-2-322-32-2-2-2000000000006--2-6-2    complex faithful

Smallest permutation representation of D24:8C4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)
(2 20)(3 15)(4 10)(6 24)(7 19)(8 14)(11 23)(12 18)(16 22)(25 28 37 40)(26 47 38 35)(27 42 39 30)(29 32 41 44)(31 46 43 34)(33 36 45 48)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43)], [(2,20),(3,15),(4,10),(6,24),(7,19),(8,14),(11,23),(12,18),(16,22),(25,28,37,40),(26,47,38,35),(27,42,39,30),(29,32,41,44),(31,46,43,34),(33,36,45,48)]])

Matrix representation of D24:8C4 in GL6(F97)

010000
96960000
00404000
00574000
00005740
00005757
,
27420000
15700000
00005740
00005757
00404000
00574000
,
7500000
0750000
001000
0009600
00004057
00005757

G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,0,0,0,0,57,57,0,0,0,0,40,57],[27,15,0,0,0,0,42,70,0,0,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,57,57,0,0,0,0,40,57,0,0],[75,0,0,0,0,0,0,75,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,40,57,0,0,0,0,57,57] >;

D24:8C4 in GAP, Magma, Sage, TeX

D_{24}\rtimes_8C_4
% in TeX

G:=Group("D24:8C4");
// GroupNames label

G:=SmallGroup(192,47);
// by ID

G=gap.SmallGroup(192,47);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,675,794,192,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations

Export

Character table of D24:8C4 in TeX

׿
x
:
Z
F
o
wr
Q
<