metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D24:8C4, C8.22D12, C24.38D4, Dic12:8C4, C12.3SD16, C8.1(C4xS3), C4.Q8:1S3, (C2xC6).30D8, (C2xC8).41D6, C3:1(D8:2C4), C24.21(C2xC4), C4.1(D6:C4), C4oD24.6C2, (C2xC12).88D4, C12.C8:4C2, C6.4(D4:C4), C12.1(C22:C4), (C2xC24).47C22, C22.8(D4:S3), C4.7(Q8:2S3), C2.6(C6.D8), (C3xC4.Q8):1C2, (C2xC4).16(C3:D4), SmallGroup(192,47)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D24:8C4
G = < a,b,c | a24=b2=c4=1, bab=a-1, cac-1=a19, cbc-1=a15b >
Subgroups: 208 in 58 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Dic3, C12, C12, D6, C2xC6, C16, C4:C4, C2xC8, D8, SD16, Q16, C4oD4, C24, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C4.Q8, M5(2), C4oD8, C3:C16, C24:C2, D24, Dic12, C3xC4:C4, C2xC24, C4oD12, D8:2C4, C12.C8, C3xC4.Q8, C4oD24, D24:8C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D8, SD16, C4xS3, D12, C3:D4, D4:C4, D6:C4, D4:S3, Q8:2S3, D8:2C4, C6.D8, D24:8C4
Character table of D24:8C4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 8A | 8B | 8C | 12A | 12B | 12C | 12D | 12E | 12F | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 24 | 2 | 2 | 2 | 8 | 8 | 24 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | i | -i | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | i | -i | i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -i | i | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | -i | i | -i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 1 | -1 | 1 | 2 | 2 | -2 | -1 | 1 | √3 | -√3 | √3 | -√3 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 1 | -1 | 1 | 2 | 2 | -2 | -1 | 1 | -√3 | √3 | -√3 | √3 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 2i | -2i | 0 | 1 | -1 | 1 | -2 | -2 | 2 | -1 | 1 | -i | -i | i | i | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C4xS3 |
ρ18 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | -2i | 2i | 0 | 1 | -1 | 1 | -2 | -2 | 2 | -1 | 1 | i | i | -i | -i | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C4xS3 |
ρ19 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ20 | 2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3:D4 |
ρ22 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3:D4 |
ρ23 | 4 | 4 | 4 | 0 | -2 | -4 | -4 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4:S3, Schur index 2 |
ρ24 | 4 | 4 | -4 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8:2S3 |
ρ25 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 0 | 2√-2 | complex lifted from D8:2C4 |
ρ26 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 0 | -2√-2 | complex lifted from D8:2C4 |
ρ27 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | √-2 | √6 | -√-2 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | √-2 | -√6 | -√-2 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | -√-2 | √6 | √-2 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | -√-2 | -√6 | √-2 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)
(2 20)(3 15)(4 10)(6 24)(7 19)(8 14)(11 23)(12 18)(16 22)(25 28 37 40)(26 47 38 35)(27 42 39 30)(29 32 41 44)(31 46 43 34)(33 36 45 48)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43), (2,20)(3,15)(4,10)(6,24)(7,19)(8,14)(11,23)(12,18)(16,22)(25,28,37,40)(26,47,38,35)(27,42,39,30)(29,32,41,44)(31,46,43,34)(33,36,45,48) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43)], [(2,20),(3,15),(4,10),(6,24),(7,19),(8,14),(11,23),(12,18),(16,22),(25,28,37,40),(26,47,38,35),(27,42,39,30),(29,32,41,44),(31,46,43,34),(33,36,45,48)]])
Matrix representation of D24:8C4 ►in GL6(F97)
0 | 1 | 0 | 0 | 0 | 0 |
96 | 96 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 57 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 57 | 40 |
0 | 0 | 0 | 0 | 57 | 57 |
27 | 42 | 0 | 0 | 0 | 0 |
15 | 70 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 57 | 40 |
0 | 0 | 0 | 0 | 57 | 57 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 57 | 40 | 0 | 0 |
75 | 0 | 0 | 0 | 0 | 0 |
0 | 75 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 96 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 57 |
0 | 0 | 0 | 0 | 57 | 57 |
G:=sub<GL(6,GF(97))| [0,96,0,0,0,0,1,96,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,0,0,0,0,57,57,0,0,0,0,40,57],[27,15,0,0,0,0,42,70,0,0,0,0,0,0,0,0,40,57,0,0,0,0,40,40,0,0,57,57,0,0,0,0,40,57,0,0],[75,0,0,0,0,0,0,75,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,40,57,0,0,0,0,57,57] >;
D24:8C4 in GAP, Magma, Sage, TeX
D_{24}\rtimes_8C_4
% in TeX
G:=Group("D24:8C4");
// GroupNames label
G:=SmallGroup(192,47);
// by ID
G=gap.SmallGroup(192,47);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,675,794,192,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^19,c*b*c^-1=a^15*b>;
// generators/relations
Export