Extensions 1→N→G→Q→1 with N=C6 and Q=M5(2)

Direct product G=N×Q with N=C6 and Q=M5(2)

Semidirect products G=N:Q with N=C6 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C61M5(2) = C2×D6.C8φ: M5(2)/C16C2 ⊆ Aut C696C6:1M5(2)192,459
C62M5(2) = C2×C12.C8φ: M5(2)/C2×C8C2 ⊆ Aut C696C6:2M5(2)192,656

Non-split extensions G=N.Q with N=C6 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C6.1M5(2) = Dic3⋊C16φ: M5(2)/C16C2 ⊆ Aut C6192C6.1M5(2)192,60
C6.2M5(2) = C4810C4φ: M5(2)/C16C2 ⊆ Aut C6192C6.2M5(2)192,61
C6.3M5(2) = D6⋊C16φ: M5(2)/C16C2 ⊆ Aut C696C6.3M5(2)192,66
C6.4M5(2) = C24.C8φ: M5(2)/C2×C8C2 ⊆ Aut C6192C6.4M5(2)192,20
C6.5M5(2) = C12⋊C16φ: M5(2)/C2×C8C2 ⊆ Aut C6192C6.5M5(2)192,21
C6.6M5(2) = C24.98D4φ: M5(2)/C2×C8C2 ⊆ Aut C696C6.6M5(2)192,108
C6.7M5(2) = C3×C165C4central extension (φ=1)192C6.7M5(2)192,152
C6.8M5(2) = C3×C22⋊C16central extension (φ=1)96C6.8M5(2)192,154
C6.9M5(2) = C3×C4⋊C16central extension (φ=1)192C6.9M5(2)192,169