Extensions 1→N→G→Q→1 with N=C3×2- 1+4 and Q=C2

Direct product G=N×Q with N=C3×2- 1+4 and Q=C2
dρLabelID
C6×2- 1+496C6xES-(2,2)192,1535

Semidirect products G=N:Q with N=C3×2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2- 1+4)⋊1C2 = 2- 1+44S3φ: C2/C1C2 ⊆ Out C3×2- 1+4488+(C3xES-(2,2)):1C2192,804
(C3×2- 1+4)⋊2C2 = D12.34C23φ: C2/C1C2 ⊆ Out C3×2- 1+4488+(C3xES-(2,2)):2C2192,1396
(C3×2- 1+4)⋊3C2 = D12.35C23φ: C2/C1C2 ⊆ Out C3×2- 1+4968-(C3xES-(2,2)):3C2192,1397
(C3×2- 1+4)⋊4C2 = S3×2- 1+4φ: C2/C1C2 ⊆ Out C3×2- 1+4488-(C3xES-(2,2)):4C2192,1526
(C3×2- 1+4)⋊5C2 = D12.39C23φ: C2/C1C2 ⊆ Out C3×2- 1+4488+(C3xES-(2,2)):5C2192,1527
(C3×2- 1+4)⋊6C2 = C3×D4.8D4φ: C2/C1C2 ⊆ Out C3×2- 1+4484(C3xES-(2,2)):6C2192,887
(C3×2- 1+4)⋊7C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C3×2- 1+4484(C3xES-(2,2)):7C2192,1466
(C3×2- 1+4)⋊8C2 = C3×Q8○D8φ: C2/C1C2 ⊆ Out C3×2- 1+4964(C3xES-(2,2)):8C2192,1467
(C3×2- 1+4)⋊9C2 = C3×C2.C25φ: trivial image484(C3xES-(2,2)):9C2192,1536

Non-split extensions G=N.Q with N=C3×2- 1+4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2- 1+4).1C2 = 2- 1+4.2S3φ: C2/C1C2 ⊆ Out C3×2- 1+4488-(C3xES-(2,2)).1C2192,805
(C3×2- 1+4).2C2 = C3×D4.10D4φ: C2/C1C2 ⊆ Out C3×2- 1+4484(C3xES-(2,2)).2C2192,889

׿
×
𝔽