direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×Q8○D8, C12.87C24, C24.50C23, 2- 1+4⋊6C6, C4○D8⋊6C6, C8○D4⋊9C6, D8.4(C2×C6), C4.47(C6×D4), SD16.(C2×C6), (C2×Q16)⋊12C6, (C6×Q16)⋊26C2, D4.13(C3×D4), (C3×D4).47D4, C8.C22⋊5C6, Q8.18(C3×D4), (C3×Q8).47D4, Q16.4(C2×C6), C22.9(C6×D4), C12.408(C2×D4), C4.10(C23×C6), C8.11(C22×C6), D4.7(C22×C6), (C3×D8).14C22, (C3×D4).40C23, C6.208(C22×D4), M4(2).6(C2×C6), (C3×Q8).41C23, Q8.11(C22×C6), (C2×C24).209C22, (C2×C12).689C23, (C3×2- 1+4)⋊8C2, (C3×Q16).16C22, (C6×Q8).189C22, (C3×SD16).3C22, (C3×M4(2)).31C22, C2.32(D4×C2×C6), (C3×C8○D4)⋊10C2, (C3×C4○D8)⋊13C2, (C2×C8).33(C2×C6), C4○D4.10(C2×C6), (C2×C6).186(C2×D4), (C2×Q8).33(C2×C6), (C3×C8.C22)⋊12C2, (C2×C4).50(C22×C6), (C3×C4○D4).35C22, SmallGroup(192,1467)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q8○D8
G = < a,b,c,d,e | a3=b4=e2=1, c2=d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d3 >
Subgroups: 346 in 248 conjugacy classes, 158 normal (18 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C12, C12, C12, C2×C6, C2×C6, C2×C8, M4(2), D8, SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C8○D4, C2×Q16, C4○D8, C8.C22, 2- 1+4, C2×C24, C3×M4(2), C3×D8, C3×SD16, C3×Q16, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, C3×C4○D4, Q8○D8, C3×C8○D4, C6×Q16, C3×C4○D8, C3×C8.C22, C3×2- 1+4, C3×Q8○D8
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, C6×D4, C23×C6, Q8○D8, D4×C2×C6, C3×Q8○D8
(1 86 91)(2 87 92)(3 88 93)(4 81 94)(5 82 95)(6 83 96)(7 84 89)(8 85 90)(9 43 49)(10 44 50)(11 45 51)(12 46 52)(13 47 53)(14 48 54)(15 41 55)(16 42 56)(17 79 29)(18 80 30)(19 73 31)(20 74 32)(21 75 25)(22 76 26)(23 77 27)(24 78 28)(33 71 64)(34 72 57)(35 65 58)(36 66 59)(37 67 60)(38 68 61)(39 69 62)(40 70 63)
(1 42 5 46)(2 43 6 47)(3 44 7 48)(4 45 8 41)(9 96 13 92)(10 89 14 93)(11 90 15 94)(12 91 16 95)(17 58 21 62)(18 59 22 63)(19 60 23 64)(20 61 24 57)(25 69 29 65)(26 70 30 66)(27 71 31 67)(28 72 32 68)(33 73 37 77)(34 74 38 78)(35 75 39 79)(36 76 40 80)(49 83 53 87)(50 84 54 88)(51 85 55 81)(52 86 56 82)
(1 58 5 62)(2 59 6 63)(3 60 7 64)(4 61 8 57)(9 30 13 26)(10 31 14 27)(11 32 15 28)(12 25 16 29)(17 46 21 42)(18 47 22 43)(19 48 23 44)(20 41 24 45)(33 88 37 84)(34 81 38 85)(35 82 39 86)(36 83 40 87)(49 80 53 76)(50 73 54 77)(51 74 55 78)(52 75 56 79)(65 95 69 91)(66 96 70 92)(67 89 71 93)(68 90 72 94)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(18 24)(19 23)(20 22)(26 32)(27 31)(28 30)(33 37)(34 36)(38 40)(41 43)(44 48)(45 47)(49 55)(50 54)(51 53)(57 59)(60 64)(61 63)(66 72)(67 71)(68 70)(73 77)(74 76)(78 80)(81 83)(84 88)(85 87)(89 93)(90 92)(94 96)
G:=sub<Sym(96)| (1,86,91)(2,87,92)(3,88,93)(4,81,94)(5,82,95)(6,83,96)(7,84,89)(8,85,90)(9,43,49)(10,44,50)(11,45,51)(12,46,52)(13,47,53)(14,48,54)(15,41,55)(16,42,56)(17,79,29)(18,80,30)(19,73,31)(20,74,32)(21,75,25)(22,76,26)(23,77,27)(24,78,28)(33,71,64)(34,72,57)(35,65,58)(36,66,59)(37,67,60)(38,68,61)(39,69,62)(40,70,63), (1,42,5,46)(2,43,6,47)(3,44,7,48)(4,45,8,41)(9,96,13,92)(10,89,14,93)(11,90,15,94)(12,91,16,95)(17,58,21,62)(18,59,22,63)(19,60,23,64)(20,61,24,57)(25,69,29,65)(26,70,30,66)(27,71,31,67)(28,72,32,68)(33,73,37,77)(34,74,38,78)(35,75,39,79)(36,76,40,80)(49,83,53,87)(50,84,54,88)(51,85,55,81)(52,86,56,82), (1,58,5,62)(2,59,6,63)(3,60,7,64)(4,61,8,57)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29)(17,46,21,42)(18,47,22,43)(19,48,23,44)(20,41,24,45)(33,88,37,84)(34,81,38,85)(35,82,39,86)(36,83,40,87)(49,80,53,76)(50,73,54,77)(51,74,55,78)(52,75,56,79)(65,95,69,91)(66,96,70,92)(67,89,71,93)(68,90,72,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(41,43)(44,48)(45,47)(49,55)(50,54)(51,53)(57,59)(60,64)(61,63)(66,72)(67,71)(68,70)(73,77)(74,76)(78,80)(81,83)(84,88)(85,87)(89,93)(90,92)(94,96)>;
G:=Group( (1,86,91)(2,87,92)(3,88,93)(4,81,94)(5,82,95)(6,83,96)(7,84,89)(8,85,90)(9,43,49)(10,44,50)(11,45,51)(12,46,52)(13,47,53)(14,48,54)(15,41,55)(16,42,56)(17,79,29)(18,80,30)(19,73,31)(20,74,32)(21,75,25)(22,76,26)(23,77,27)(24,78,28)(33,71,64)(34,72,57)(35,65,58)(36,66,59)(37,67,60)(38,68,61)(39,69,62)(40,70,63), (1,42,5,46)(2,43,6,47)(3,44,7,48)(4,45,8,41)(9,96,13,92)(10,89,14,93)(11,90,15,94)(12,91,16,95)(17,58,21,62)(18,59,22,63)(19,60,23,64)(20,61,24,57)(25,69,29,65)(26,70,30,66)(27,71,31,67)(28,72,32,68)(33,73,37,77)(34,74,38,78)(35,75,39,79)(36,76,40,80)(49,83,53,87)(50,84,54,88)(51,85,55,81)(52,86,56,82), (1,58,5,62)(2,59,6,63)(3,60,7,64)(4,61,8,57)(9,30,13,26)(10,31,14,27)(11,32,15,28)(12,25,16,29)(17,46,21,42)(18,47,22,43)(19,48,23,44)(20,41,24,45)(33,88,37,84)(34,81,38,85)(35,82,39,86)(36,83,40,87)(49,80,53,76)(50,73,54,77)(51,74,55,78)(52,75,56,79)(65,95,69,91)(66,96,70,92)(67,89,71,93)(68,90,72,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(41,43)(44,48)(45,47)(49,55)(50,54)(51,53)(57,59)(60,64)(61,63)(66,72)(67,71)(68,70)(73,77)(74,76)(78,80)(81,83)(84,88)(85,87)(89,93)(90,92)(94,96) );
G=PermutationGroup([[(1,86,91),(2,87,92),(3,88,93),(4,81,94),(5,82,95),(6,83,96),(7,84,89),(8,85,90),(9,43,49),(10,44,50),(11,45,51),(12,46,52),(13,47,53),(14,48,54),(15,41,55),(16,42,56),(17,79,29),(18,80,30),(19,73,31),(20,74,32),(21,75,25),(22,76,26),(23,77,27),(24,78,28),(33,71,64),(34,72,57),(35,65,58),(36,66,59),(37,67,60),(38,68,61),(39,69,62),(40,70,63)], [(1,42,5,46),(2,43,6,47),(3,44,7,48),(4,45,8,41),(9,96,13,92),(10,89,14,93),(11,90,15,94),(12,91,16,95),(17,58,21,62),(18,59,22,63),(19,60,23,64),(20,61,24,57),(25,69,29,65),(26,70,30,66),(27,71,31,67),(28,72,32,68),(33,73,37,77),(34,74,38,78),(35,75,39,79),(36,76,40,80),(49,83,53,87),(50,84,54,88),(51,85,55,81),(52,86,56,82)], [(1,58,5,62),(2,59,6,63),(3,60,7,64),(4,61,8,57),(9,30,13,26),(10,31,14,27),(11,32,15,28),(12,25,16,29),(17,46,21,42),(18,47,22,43),(19,48,23,44),(20,41,24,45),(33,88,37,84),(34,81,38,85),(35,82,39,86),(36,83,40,87),(49,80,53,76),(50,73,54,77),(51,74,55,78),(52,75,56,79),(65,95,69,91),(66,96,70,92),(67,89,71,93),(68,90,72,94)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(18,24),(19,23),(20,22),(26,32),(27,31),(28,30),(33,37),(34,36),(38,40),(41,43),(44,48),(45,47),(49,55),(50,54),(51,53),(57,59),(60,64),(61,63),(66,72),(67,71),(68,70),(73,77),(74,76),(78,80),(81,83),(84,88),(85,87),(89,93),(90,92),(94,96)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 8A | 8B | 8C | 8D | 8E | 12A | ··· | 12H | 12I | ··· | 12T | 24A | 24B | 24C | 24D | 24E | ··· | 24J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | C3×D4 | C3×D4 | Q8○D8 | C3×Q8○D8 |
kernel | C3×Q8○D8 | C3×C8○D4 | C6×Q16 | C3×C4○D8 | C3×C8.C22 | C3×2- 1+4 | Q8○D8 | C8○D4 | C2×Q16 | C4○D8 | C8.C22 | 2- 1+4 | C3×D4 | C3×Q8 | D4 | Q8 | C3 | C1 |
# reps | 1 | 1 | 3 | 3 | 6 | 2 | 2 | 2 | 6 | 6 | 12 | 4 | 3 | 1 | 6 | 2 | 2 | 4 |
Matrix representation of C3×Q8○D8 ►in GL4(𝔽7) generated by
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 2 |
0 | 6 | 5 | 1 |
3 | 0 | 5 | 6 |
3 | 3 | 6 | 1 |
1 | 6 | 3 | 1 |
6 | 1 | 3 | 5 |
4 | 6 | 5 | 1 |
4 | 3 | 2 | 6 |
2 | 0 | 4 | 0 |
5 | 0 | 2 | 6 |
6 | 5 | 5 | 6 |
6 | 1 | 1 | 2 |
2 | 2 | 6 | 2 |
0 | 1 | 5 | 1 |
5 | 0 | 2 | 1 |
1 | 6 | 3 | 6 |
5 | 5 | 4 | 4 |
G:=sub<GL(4,GF(7))| [2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2],[0,3,3,1,6,0,3,6,5,5,6,3,1,6,1,1],[6,4,4,2,1,6,3,0,3,5,2,4,5,1,6,0],[5,6,6,2,0,5,1,2,2,5,1,6,6,6,2,2],[0,5,1,5,1,0,6,5,5,2,3,4,1,1,6,4] >;
C3×Q8○D8 in GAP, Magma, Sage, TeX
C_3\times Q_8\circ D_8
% in TeX
G:=Group("C3xQ8oD8");
// GroupNames label
G:=SmallGroup(192,1467);
// by ID
G=gap.SmallGroup(192,1467);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,680,745,6053,3036,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=e^2=1,c^2=d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^3>;
// generators/relations