# Extensions 1→N→G→Q→1 with N=C2×D8 and Q=C6

Direct product G=N×Q with N=C2×D8 and Q=C6
dρLabelID
C2×C6×D896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C2×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D8)⋊1C6 = C3×C22⋊D8φ: C6/C3C2 ⊆ Out C2×D848(C2xD8):1C6192,880
(C2×D8)⋊2C6 = C3×D4⋊D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):2C6192,882
(C2×D8)⋊3C6 = C3×C4⋊D8φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):3C6192,892
(C2×D8)⋊4C6 = C3×C87D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):4C6192,899
(C2×D8)⋊5C6 = C3×C84D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):5C6192,926
(C2×D8)⋊6C6 = C6×D16φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):6C6192,938
(C2×D8)⋊7C6 = C3×C82D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):7C6192,902
(C2×D8)⋊8C6 = C3×D4.4D4φ: C6/C3C2 ⊆ Out C2×D8484(C2xD8):8C6192,905
(C2×D8)⋊9C6 = C3×C83D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8):9C6192,929
(C2×D8)⋊10C6 = C3×C16⋊C22φ: C6/C3C2 ⊆ Out C2×D8484(C2xD8):10C6192,942
(C2×D8)⋊11C6 = C6×C8⋊C22φ: C6/C3C2 ⊆ Out C2×D848(C2xD8):11C6192,1462
(C2×D8)⋊12C6 = C3×D4○D8φ: C6/C3C2 ⊆ Out C2×D8484(C2xD8):12C6192,1465
(C2×D8)⋊13C6 = C6×C4○D8φ: trivial image96(C2xD8):13C6192,1461

Non-split extensions G=N.Q with N=C2×D8 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×D8).1C6 = C3×C2.D16φ: C6/C3C2 ⊆ Out C2×D896(C2xD8).1C6192,163
(C2×D8).2C6 = C3×D4.2D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8).2C6192,896
(C2×D8).3C6 = C3×C8.12D4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8).3C6192,928
(C2×D8).4C6 = C6×SD32φ: C6/C3C2 ⊆ Out C2×D896(C2xD8).4C6192,939
(C2×D8).5C6 = C3×M5(2)⋊C2φ: C6/C3C2 ⊆ Out C2×D8484(C2xD8).5C6192,167
(C2×D8).6C6 = C3×D8⋊C4φ: C6/C3C2 ⊆ Out C2×D896(C2xD8).6C6192,875
(C2×D8).7C6 = C12×D8φ: trivial image96(C2xD8).7C6192,870

׿
×
𝔽