Copied to
clipboard

G = C3×C83D4order 192 = 26·3

Direct product of C3 and C83D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C83D4, C2418D4, C83(C3×D4), (C2×D8)⋊9C6, C8⋊C44C6, C4.5(C6×D4), (C6×D8)⋊23C2, C41D46C6, (C2×SD16)⋊3C6, C4.4D45C6, (C6×SD16)⋊14C2, C12.312(C2×D4), (C2×C12).343D4, C42.29(C2×C6), C6.46(C41D4), C22.117(C6×D4), C6.147(C8⋊C22), (C2×C24).203C22, (C2×C12).952C23, (C4×C12).271C22, (C6×D4).205C22, (C6×Q8).179C22, (C3×C8⋊C4)⋊9C2, (C2×C8).27(C2×C6), (C2×C4).44(C3×D4), C2.9(C3×C41D4), (C3×C41D4)⋊14C2, (C2×D4).28(C2×C6), (C2×C6).673(C2×D4), C2.22(C3×C8⋊C22), (C2×Q8).24(C2×C6), (C3×C4.4D4)⋊25C2, (C2×C4).127(C22×C6), SmallGroup(192,929)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C83D4
C1C2C22C2×C4C2×C12C6×D4C6×SD16 — C3×C83D4
C1C2C2×C4 — C3×C83D4
C1C2×C6C4×C12 — C3×C83D4

Generators and relations for C3×C83D4
 G = < a,b,c,d | a3=b8=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >

Subgroups: 322 in 144 conjugacy classes, 58 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×C8, D8, SD16, C2×D4, C2×D4, C2×D4, C2×Q8, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C8⋊C4, C4.4D4, C41D4, C2×D8, C2×SD16, C4×C12, C3×C22⋊C4, C2×C24, C3×D8, C3×SD16, C6×D4, C6×D4, C6×D4, C6×Q8, C83D4, C3×C8⋊C4, C3×C4.4D4, C3×C41D4, C6×D8, C6×SD16, C3×C83D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C41D4, C8⋊C22, C6×D4, C83D4, C3×C41D4, C3×C8⋊C22, C3×C83D4

Smallest permutation representation of C3×C83D4
On 96 points
Generators in S96
(1 65 17)(2 66 18)(3 67 19)(4 68 20)(5 69 21)(6 70 22)(7 71 23)(8 72 24)(9 32 62)(10 25 63)(11 26 64)(12 27 57)(13 28 58)(14 29 59)(15 30 60)(16 31 61)(33 73 81)(34 74 82)(35 75 83)(36 76 84)(37 77 85)(38 78 86)(39 79 87)(40 80 88)(41 55 89)(42 56 90)(43 49 91)(44 50 92)(45 51 93)(46 52 94)(47 53 95)(48 54 96)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 47 79 25)(2 44 80 30)(3 41 73 27)(4 46 74 32)(5 43 75 29)(6 48 76 26)(7 45 77 31)(8 42 78 28)(9 20 94 34)(10 17 95 39)(11 22 96 36)(12 19 89 33)(13 24 90 38)(14 21 91 35)(15 18 92 40)(16 23 93 37)(49 83 59 69)(50 88 60 66)(51 85 61 71)(52 82 62 68)(53 87 63 65)(54 84 64 70)(55 81 57 67)(56 86 58 72)
(1 74)(2 73)(3 80)(4 79)(5 78)(6 77)(7 76)(8 75)(9 10)(11 16)(12 15)(13 14)(17 34)(18 33)(19 40)(20 39)(21 38)(22 37)(23 36)(24 35)(25 32)(26 31)(27 30)(28 29)(41 44)(42 43)(45 48)(46 47)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 64)(62 63)(65 82)(66 81)(67 88)(68 87)(69 86)(70 85)(71 84)(72 83)(89 92)(90 91)(93 96)(94 95)

G:=sub<Sym(96)| (1,65,17)(2,66,18)(3,67,19)(4,68,20)(5,69,21)(6,70,22)(7,71,23)(8,72,24)(9,32,62)(10,25,63)(11,26,64)(12,27,57)(13,28,58)(14,29,59)(15,30,60)(16,31,61)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,55,89)(42,56,90)(43,49,91)(44,50,92)(45,51,93)(46,52,94)(47,53,95)(48,54,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,47,79,25)(2,44,80,30)(3,41,73,27)(4,46,74,32)(5,43,75,29)(6,48,76,26)(7,45,77,31)(8,42,78,28)(9,20,94,34)(10,17,95,39)(11,22,96,36)(12,19,89,33)(13,24,90,38)(14,21,91,35)(15,18,92,40)(16,23,93,37)(49,83,59,69)(50,88,60,66)(51,85,61,71)(52,82,62,68)(53,87,63,65)(54,84,64,70)(55,81,57,67)(56,86,58,72), (1,74)(2,73)(3,80)(4,79)(5,78)(6,77)(7,76)(8,75)(9,10)(11,16)(12,15)(13,14)(17,34)(18,33)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,32)(26,31)(27,30)(28,29)(41,44)(42,43)(45,48)(46,47)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,82)(66,81)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(89,92)(90,91)(93,96)(94,95)>;

G:=Group( (1,65,17)(2,66,18)(3,67,19)(4,68,20)(5,69,21)(6,70,22)(7,71,23)(8,72,24)(9,32,62)(10,25,63)(11,26,64)(12,27,57)(13,28,58)(14,29,59)(15,30,60)(16,31,61)(33,73,81)(34,74,82)(35,75,83)(36,76,84)(37,77,85)(38,78,86)(39,79,87)(40,80,88)(41,55,89)(42,56,90)(43,49,91)(44,50,92)(45,51,93)(46,52,94)(47,53,95)(48,54,96), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,47,79,25)(2,44,80,30)(3,41,73,27)(4,46,74,32)(5,43,75,29)(6,48,76,26)(7,45,77,31)(8,42,78,28)(9,20,94,34)(10,17,95,39)(11,22,96,36)(12,19,89,33)(13,24,90,38)(14,21,91,35)(15,18,92,40)(16,23,93,37)(49,83,59,69)(50,88,60,66)(51,85,61,71)(52,82,62,68)(53,87,63,65)(54,84,64,70)(55,81,57,67)(56,86,58,72), (1,74)(2,73)(3,80)(4,79)(5,78)(6,77)(7,76)(8,75)(9,10)(11,16)(12,15)(13,14)(17,34)(18,33)(19,40)(20,39)(21,38)(22,37)(23,36)(24,35)(25,32)(26,31)(27,30)(28,29)(41,44)(42,43)(45,48)(46,47)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,82)(66,81)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(89,92)(90,91)(93,96)(94,95) );

G=PermutationGroup([[(1,65,17),(2,66,18),(3,67,19),(4,68,20),(5,69,21),(6,70,22),(7,71,23),(8,72,24),(9,32,62),(10,25,63),(11,26,64),(12,27,57),(13,28,58),(14,29,59),(15,30,60),(16,31,61),(33,73,81),(34,74,82),(35,75,83),(36,76,84),(37,77,85),(38,78,86),(39,79,87),(40,80,88),(41,55,89),(42,56,90),(43,49,91),(44,50,92),(45,51,93),(46,52,94),(47,53,95),(48,54,96)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,47,79,25),(2,44,80,30),(3,41,73,27),(4,46,74,32),(5,43,75,29),(6,48,76,26),(7,45,77,31),(8,42,78,28),(9,20,94,34),(10,17,95,39),(11,22,96,36),(12,19,89,33),(13,24,90,38),(14,21,91,35),(15,18,92,40),(16,23,93,37),(49,83,59,69),(50,88,60,66),(51,85,61,71),(52,82,62,68),(53,87,63,65),(54,84,64,70),(55,81,57,67),(56,86,58,72)], [(1,74),(2,73),(3,80),(4,79),(5,78),(6,77),(7,76),(8,75),(9,10),(11,16),(12,15),(13,14),(17,34),(18,33),(19,40),(20,39),(21,38),(22,37),(23,36),(24,35),(25,32),(26,31),(27,30),(28,29),(41,44),(42,43),(45,48),(46,47),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,64),(62,63),(65,82),(66,81),(67,88),(68,87),(69,86),(70,85),(71,84),(72,83),(89,92),(90,91),(93,96),(94,95)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E6A···6F6G···6L8A8B8C8D12A12B12C12D12E12F12G12H12I12J24A···24H
order122222233444446···66···688881212121212121212121224···24
size111188811224481···18···8444422224444884···4

48 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4C3×D4C3×D4C8⋊C22C3×C8⋊C22
kernelC3×C83D4C3×C8⋊C4C3×C4.4D4C3×C41D4C6×D8C6×SD16C83D4C8⋊C4C4.4D4C41D4C2×D8C2×SD16C24C2×C12C8C2×C4C6C2
# reps111122222244428424

Matrix representation of C3×C83D4 in GL8(𝔽73)

80000000
08000000
00100000
00010000
00001000
00000100
00000010
00000001
,
01000000
720000000
001710000
001720000
00005621954
0000712054
00002171558
0000170710
,
720000000
072000000
001710000
001720000
00000010
0000721171
000072000
0000721072
,
01000000
10000000
001710000
000720000
00005621954
0000271019
00002171558
0000215714

G:=sub<GL(8,GF(73))| [8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,71,72,0,0,0,0,0,0,0,0,56,71,2,17,0,0,0,0,2,2,17,0,0,0,0,0,19,0,15,71,0,0,0,0,54,54,58,0],[72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,71,72,0,0,0,0,0,0,0,0,0,72,72,72,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,71,0,72],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,71,72,0,0,0,0,0,0,0,0,56,2,2,2,0,0,0,0,2,71,17,15,0,0,0,0,19,0,15,71,0,0,0,0,54,19,58,4] >;

C3×C83D4 in GAP, Magma, Sage, TeX

C_3\times C_8\rtimes_3D_4
% in TeX

G:=Group("C3xC8:3D4");
// GroupNames label

G:=SmallGroup(192,929);
// by ID

G=gap.SmallGroup(192,929);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,176,1094,1059,268,4204,172]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽