Extensions 1→N→G→Q→1 with N=C2×C3⋊D4 and Q=C4

Direct product G=N×Q with N=C2×C3⋊D4 and Q=C4
dρLabelID
C2×C4×C3⋊D496C2xC4xC3:D4192,1347

Semidirect products G=N:Q with N=C2×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4)⋊1C4 = C23⋊C45S3φ: C4/C1C4 ⊆ Out C2×C3⋊D4488-(C2xC3:D4):1C4192,299
(C2×C3⋊D4)⋊2C4 = S3×C23⋊C4φ: C4/C1C4 ⊆ Out C2×C3⋊D4248+(C2xC3:D4):2C4192,302
(C2×C3⋊D4)⋊3C4 = C2×C23.6D6φ: C4/C2C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):3C4192,513
(C2×C3⋊D4)⋊4C4 = C24.23D6φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4):4C4192,515
(C2×C3⋊D4)⋊5C4 = C24.24D6φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4):5C4192,516
(C2×C3⋊D4)⋊6C4 = C24.60D6φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4):6C4192,517
(C2×C3⋊D4)⋊7C4 = C24.76D6φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4):7C4192,772
(C2×C3⋊D4)⋊8C4 = C2×Dic34D4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4):8C4192,1044
(C2×C3⋊D4)⋊9C4 = C24.35D6φ: C4/C2C2 ⊆ Out C2×C3⋊D448(C2xC3:D4):9C4192,1045

Non-split extensions G=N.Q with N=C2×C3⋊D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊D4).1C4 = S3×C4.D4φ: C4/C1C4 ⊆ Out C2×C3⋊D4248+(C2xC3:D4).1C4192,303
(C2×C3⋊D4).2C4 = M4(2).19D6φ: C4/C1C4 ⊆ Out C2×C3⋊D4488-(C2xC3:D4).2C4192,304
(C2×C3⋊D4).3C4 = C3⋊D4⋊C8φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).3C4192,284
(C2×C3⋊D4).4C4 = D6⋊C8⋊C2φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).4C4192,286
(C2×C3⋊D4).5C4 = D62M4(2)φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).5C4192,287
(C2×C3⋊D4).6C4 = Dic3⋊M4(2)φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).6C4192,288
(C2×C3⋊D4).7C4 = C3⋊C826D4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).7C4192,289
(C2×C3⋊D4).8C4 = (C22×C8)⋊7S3φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).8C4192,669
(C2×C3⋊D4).9C4 = C2433D4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).9C4192,670
(C2×C3⋊D4).10C4 = C24⋊D4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).10C4192,686
(C2×C3⋊D4).11C4 = C2421D4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).11C4192,687
(C2×C3⋊D4).12C4 = D6⋊C840C2φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).12C4192,688
(C2×C3⋊D4).13C4 = M4(2).31D6φ: C4/C2C2 ⊆ Out C2×C3⋊D4484(C2xC3:D4).13C4192,691
(C2×C3⋊D4).14C4 = C2×D12.C4φ: C4/C2C2 ⊆ Out C2×C3⋊D496(C2xC3:D4).14C4192,1303
(C2×C3⋊D4).15C4 = M4(2)⋊26D6φ: C4/C2C2 ⊆ Out C2×C3⋊D4484(C2xC3:D4).15C4192,1304
(C2×C3⋊D4).16C4 = C8×C3⋊D4φ: trivial image96(C2xC3:D4).16C4192,668
(C2×C3⋊D4).17C4 = C2×C8○D12φ: trivial image96(C2xC3:D4).17C4192,1297

׿
×
𝔽