direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C3⋊D4, C6⋊2D4, C23⋊2S3, C22⋊3D6, D6⋊3C22, C6.10C23, Dic3⋊2C22, C3⋊3(C2×D4), (C2×C6)⋊3C22, (C22×C6)⋊2C2, (C22×S3)⋊3C2, (C2×Dic3)⋊4C2, C2.10(C22×S3), SmallGroup(48,43)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C3⋊D4
G = < a,b,c,d | a2=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 108 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C23, Dic3, D6, D6, C2×C6, C2×C6, C2×C6, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C2×C3⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C2×C3⋊D4
Character table of C2×C3⋊D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -√-3 | -√-3 | √-3 | 1 | 1 | -1 | √-3 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -√-3 | √-3 | √-3 | -1 | 1 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | √-3 | -√-3 | -√-3 | -1 | 1 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | √-3 | √-3 | -√-3 | 1 | 1 | -1 | -√-3 | complex lifted from C3⋊D4 |
(1 5)(2 6)(3 7)(4 8)(9 23)(10 24)(11 21)(12 22)(13 18)(14 19)(15 20)(16 17)
(1 20 21)(2 22 17)(3 18 23)(4 24 19)(5 15 11)(6 12 16)(7 13 9)(8 10 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 7)(2 6)(3 5)(4 8)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,15,11)(6,12,16)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7)(2,6)(3,5)(4,8)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,23)(10,24)(11,21)(12,22)(13,18)(14,19)(15,20)(16,17), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,15,11)(6,12,16)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,7)(2,6)(3,5)(4,8)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,23),(10,24),(11,21),(12,22),(13,18),(14,19),(15,20),(16,17)], [(1,20,21),(2,22,17),(3,18,23),(4,24,19),(5,15,11),(6,12,16),(7,13,9),(8,10,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,7),(2,6),(3,5),(4,8),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])
G:=TransitiveGroup(24,25);
(1 9)(2 10)(3 11)(4 12)(5 22)(6 23)(7 24)(8 21)(13 19)(14 20)(15 17)(16 18)
(1 6 19)(2 20 7)(3 8 17)(4 18 5)(9 23 13)(10 14 24)(11 21 15)(12 16 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 6)(7 8)(9 12)(10 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)
G:=sub<Sym(24)| (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,19)(14,20)(15,17)(16,18), (1,6,19)(2,20,7)(3,8,17)(4,18,5)(9,23,13)(10,14,24)(11,21,15)(12,16,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,19)(14,20)(15,17)(16,18), (1,6,19)(2,20,7)(3,8,17)(4,18,5)(9,23,13)(10,14,24)(11,21,15)(12,16,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,6)(7,8)(9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,22),(6,23),(7,24),(8,21),(13,19),(14,20),(15,17),(16,18)], [(1,6,19),(2,20,7),(3,8,17),(4,18,5),(9,23,13),(10,14,24),(11,21,15),(12,16,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,6),(7,8),(9,12),(10,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23)]])
G:=TransitiveGroup(24,45);
C2×C3⋊D4 is a maximal subgroup of
C23.6D6 Dic3⋊4D4 D6⋊D4 C23.9D6 Dic3⋊D4 C23.11D6 C23.21D6 C23.28D6 C12⋊7D4 C23⋊2D6 D6⋊3D4 C23.14D6 C12⋊3D4 C24⋊4S3 C2×S3×D4 D4⋊6D6 C23.16S4
C2×C3⋊D4 is a maximal quotient of
C12.48D4 C23.28D6 C12⋊7D4 D12⋊6C22 C23.23D6 C23.12D6 C23⋊2D6 D6⋊3D4 C23.14D6 C12⋊3D4 Q8.11D6 Dic3⋊Q8 D6⋊3Q8 C12.23D4 D4⋊D6 Q8.13D6 Q8.14D6 C24⋊4S3
Matrix representation of C2×C3⋊D4 ►in GL3(𝔽13) generated by
12 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 12 | 12 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 11 | 9 |
0 | 11 | 2 |
12 | 0 | 0 |
0 | 1 | 0 |
0 | 12 | 12 |
G:=sub<GL(3,GF(13))| [12,0,0,0,1,0,0,0,1],[1,0,0,0,12,1,0,12,0],[1,0,0,0,11,11,0,9,2],[12,0,0,0,1,12,0,0,12] >;
C2×C3⋊D4 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes D_4
% in TeX
G:=Group("C2xC3:D4");
// GroupNames label
G:=SmallGroup(48,43);
// by ID
G=gap.SmallGroup(48,43);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,182,804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export