Direct product G=NxQ with N=C24 and Q=Q8
Semidirect products G=N:Q with N=C24 and Q=Q8
extension | φ:Q→Aut N | d | ρ | Label | ID |
C24:1Q8 = C8:Dic6 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:1Q8 | 192,261 |
C24:2Q8 = C24:2Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:2Q8 | 192,433 |
C24:3Q8 = C24:3Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:3Q8 | 192,415 |
C24:4Q8 = C24:4Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:4Q8 | 192,435 |
C24:5Q8 = C24:5Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:5Q8 | 192,414 |
C24:6Q8 = C3xC8:Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:6Q8 | 192,934 |
C24:7Q8 = C24:Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24:7Q8 | 192,260 |
C24:8Q8 = C24:8Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:8Q8 | 192,241 |
C24:9Q8 = C24:9Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:9Q8 | 192,239 |
C24:10Q8 = C3xC8:2Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:10Q8 | 192,933 |
C24:11Q8 = C8xDic6 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:11Q8 | 192,237 |
C24:12Q8 = C24:12Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:12Q8 | 192,238 |
C24:13Q8 = C3xC8:3Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:13Q8 | 192,931 |
C24:14Q8 = C3xC8:4Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24:14Q8 | 192,879 |
Non-split extensions G=N.Q with N=C24 and Q=Q8
extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.1Q8 = C24.Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.1Q8 | 192,72 |
C24.2Q8 = C6.6D16 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24.2Q8 | 192,48 |
C24.3Q8 = C6.SD32 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24.3Q8 | 192,49 |
C24.4Q8 = C8.6Dic6 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24.4Q8 | 192,437 |
C24.5Q8 = C8.Dic6 | φ: Q8/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.5Q8 | 192,46 |
C24.6Q8 = C24.6Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.6Q8 | 192,53 |
C24.7Q8 = C24.7Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.7Q8 | 192,52 |
C24.8Q8 = C8.8Dic6 | φ: Q8/C2 → C22 ⊆ Aut C24 | 192 | | C24.8Q8 | 192,417 |
C24.9Q8 = C3xC8.Q8 | φ: Q8/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.9Q8 | 192,171 |
C24.10Q8 = C24.97D4 | φ: Q8/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.10Q8 | 192,70 |
C24.11Q8 = C48:5C4 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.11Q8 | 192,63 |
C24.12Q8 = C48:6C4 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.12Q8 | 192,64 |
C24.13Q8 = C24.13Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.13Q8 | 192,242 |
C24.14Q8 = C48.C4 | φ: Q8/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.14Q8 | 192,65 |
C24.15Q8 = C3xC16:3C4 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.15Q8 | 192,172 |
C24.16Q8 = C3xC16:4C4 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.16Q8 | 192,173 |
C24.17Q8 = C12:C16 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.17Q8 | 192,21 |
C24.18Q8 = C24.1C8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 48 | 2 | C24.18Q8 | 192,22 |
C24.19Q8 = Dic3:C16 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.19Q8 | 192,60 |
C24.20Q8 = C3xC8.4Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.20Q8 | 192,174 |
C24.21Q8 = C3xC8.5Q8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 192 | | C24.21Q8 | 192,932 |
C24.22Q8 = C3xC8.C8 | φ: Q8/C4 → C2 ⊆ Aut C24 | 48 | 2 | C24.22Q8 | 192,170 |
C24.23Q8 = C3xC4:C16 | central extension (φ=1) | 192 | | C24.23Q8 | 192,169 |
x
:
Z
F
o
wr
Q
<