Copied to
clipboard

G = C243Q8order 192 = 26·3

3rd semidirect product of C24 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C243Q8, C82Dic6, C3⋊C81Q8, C32(C8⋊Q8), C4⋊C4.33D6, (C2×C8).59D6, C12⋊Q8.6C2, C4.21(S3×Q8), C4.Q8.3S3, C6.14(C4⋊Q8), C2.9(C12⋊Q8), C12.57(C2×Q8), C24⋊C4.2C2, C241C4.17C2, C4.21(C2×Dic6), C6.Q16.4C2, C2.20(Q83D6), C6.67(C8⋊C22), (C2×Dic3).38D4, C22.211(S3×D4), C4.Dic6.4C2, C12.Q8.6C2, (C2×C24).108C22, (C2×C12).272C23, C2.21(D4.D6), C6.39(C8.C22), C4⋊Dic3.104C22, (C4×Dic3).29C22, (C3×C4.Q8).3C2, (C2×C6).277(C2×D4), (C2×C3⋊C8).53C22, (C3×C4⋊C4).65C22, (C2×C4).375(C22×S3), SmallGroup(192,415)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C243Q8
C1C3C6C2×C6C2×C12C4×Dic3C24⋊C4 — C243Q8
C3C6C2×C12 — C243Q8
C1C22C2×C4C4.Q8

Generators and relations for C243Q8
 G = < a,b,c | a24=b4=1, c2=b2, bab-1=a19, cac-1=a5, cbc-1=b-1 >

Subgroups: 240 in 90 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C8, C2×C4, C2×C4, Q8, Dic3, C12, C12, C2×C6, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C3⋊C8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C8⋊C4, C4.Q8, C4.Q8, C2.D8, C42.C2, C4⋊Q8, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C3×C4⋊C4, C2×C24, C2×Dic6, C8⋊Q8, C6.Q16, C12.Q8, C24⋊C4, C241C4, C3×C4.Q8, C12⋊Q8, C4.Dic6, C243Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, C22×S3, C4⋊Q8, C8⋊C22, C8.C22, C2×Dic6, S3×D4, S3×Q8, C8⋊Q8, C12⋊Q8, Q83D6, D4.D6, C243Q8

Character table of C243Q8

 class 12A2B2C34A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111122288121224242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111111-11111-1111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ31111111-11-1-1-11111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ4111111111-1-1-1-111111-1-11111111111    linear of order 2
ρ511111111-1-1-11-1111-1-11111-1-111-1-1-1-1    linear of order 2
ρ61111111-1-1-1-11111111-1-111-1-1-1-11111    linear of order 2
ρ71111111-1-111-1-1111111111-1-1-1-11111    linear of order 2
ρ811111111-111-11111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ922222-2-200-22002220000-2-200000000    orthogonal lifted from D4
ρ1022222-2-2002-2002220000-2-200000000    orthogonal lifted from D4
ρ112222-122220000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122222-122-2-20000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ132222-122-220000-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ142222-1222-20000-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ152-2-222-22000000-2-2200-22-2200000000    symplectic lifted from Q8, Schur index 2
ρ162-2-2222-2000000-2-222-2002-200002-2-22    symplectic lifted from Q8, Schur index 2
ρ172-2-222-22000000-2-22002-2-2200000000    symplectic lifted from Q8, Schur index 2
ρ182-2-2222-2000000-2-22-22002-20000-222-2    symplectic lifted from Q8, Schur index 2
ρ192-2-22-12-200000011-12-200-113-3-33-111-1    symplectic lifted from Dic6, Schur index 2
ρ202-2-22-12-200000011-12-200-11-333-3-111-1    symplectic lifted from Dic6, Schur index 2
ρ212-2-22-12-200000011-1-2200-11-33-331-1-11    symplectic lifted from Dic6, Schur index 2
ρ222-2-22-12-200000011-1-2200-113-33-31-1-11    symplectic lifted from Dic6, Schur index 2
ρ234-44-4-200000000-2220000000000-6-666    orthogonal lifted from Q83D6
ρ244444-2-4-4000000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ254-44-44000000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ264-44-4-200000000-222000000000066-6-6    orthogonal lifted from Q83D6
ρ274-4-44-2-4400000022-200002-200000000    symplectic lifted from S3×Q8, Schur index 2
ρ2844-4-4-2000000002-2200000000006-66-6    symplectic lifted from D4.D6, Schur index 2
ρ2944-4-4-2000000002-220000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ3044-4-4400000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of C243Q8
Regular action on 192 points
Generators in S192
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 143 62 94)(2 138 63 89)(3 133 64 84)(4 128 65 79)(5 123 66 74)(6 142 67 93)(7 137 68 88)(8 132 69 83)(9 127 70 78)(10 122 71 73)(11 141 72 92)(12 136 49 87)(13 131 50 82)(14 126 51 77)(15 121 52 96)(16 140 53 91)(17 135 54 86)(18 130 55 81)(19 125 56 76)(20 144 57 95)(21 139 58 90)(22 134 59 85)(23 129 60 80)(24 124 61 75)(25 182 166 108)(26 177 167 103)(27 172 168 98)(28 191 145 117)(29 186 146 112)(30 181 147 107)(31 176 148 102)(32 171 149 97)(33 190 150 116)(34 185 151 111)(35 180 152 106)(36 175 153 101)(37 170 154 120)(38 189 155 115)(39 184 156 110)(40 179 157 105)(41 174 158 100)(42 169 159 119)(43 188 160 114)(44 183 161 109)(45 178 162 104)(46 173 163 99)(47 192 164 118)(48 187 165 113)
(1 27 62 168)(2 32 63 149)(3 37 64 154)(4 42 65 159)(5 47 66 164)(6 28 67 145)(7 33 68 150)(8 38 69 155)(9 43 70 160)(10 48 71 165)(11 29 72 146)(12 34 49 151)(13 39 50 156)(14 44 51 161)(15 25 52 166)(16 30 53 147)(17 35 54 152)(18 40 55 157)(19 45 56 162)(20 26 57 167)(21 31 58 148)(22 36 59 153)(23 41 60 158)(24 46 61 163)(73 187 122 113)(74 192 123 118)(75 173 124 99)(76 178 125 104)(77 183 126 109)(78 188 127 114)(79 169 128 119)(80 174 129 100)(81 179 130 105)(82 184 131 110)(83 189 132 115)(84 170 133 120)(85 175 134 101)(86 180 135 106)(87 185 136 111)(88 190 137 116)(89 171 138 97)(90 176 139 102)(91 181 140 107)(92 186 141 112)(93 191 142 117)(94 172 143 98)(95 177 144 103)(96 182 121 108)

G:=sub<Sym(192)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,143,62,94)(2,138,63,89)(3,133,64,84)(4,128,65,79)(5,123,66,74)(6,142,67,93)(7,137,68,88)(8,132,69,83)(9,127,70,78)(10,122,71,73)(11,141,72,92)(12,136,49,87)(13,131,50,82)(14,126,51,77)(15,121,52,96)(16,140,53,91)(17,135,54,86)(18,130,55,81)(19,125,56,76)(20,144,57,95)(21,139,58,90)(22,134,59,85)(23,129,60,80)(24,124,61,75)(25,182,166,108)(26,177,167,103)(27,172,168,98)(28,191,145,117)(29,186,146,112)(30,181,147,107)(31,176,148,102)(32,171,149,97)(33,190,150,116)(34,185,151,111)(35,180,152,106)(36,175,153,101)(37,170,154,120)(38,189,155,115)(39,184,156,110)(40,179,157,105)(41,174,158,100)(42,169,159,119)(43,188,160,114)(44,183,161,109)(45,178,162,104)(46,173,163,99)(47,192,164,118)(48,187,165,113), (1,27,62,168)(2,32,63,149)(3,37,64,154)(4,42,65,159)(5,47,66,164)(6,28,67,145)(7,33,68,150)(8,38,69,155)(9,43,70,160)(10,48,71,165)(11,29,72,146)(12,34,49,151)(13,39,50,156)(14,44,51,161)(15,25,52,166)(16,30,53,147)(17,35,54,152)(18,40,55,157)(19,45,56,162)(20,26,57,167)(21,31,58,148)(22,36,59,153)(23,41,60,158)(24,46,61,163)(73,187,122,113)(74,192,123,118)(75,173,124,99)(76,178,125,104)(77,183,126,109)(78,188,127,114)(79,169,128,119)(80,174,129,100)(81,179,130,105)(82,184,131,110)(83,189,132,115)(84,170,133,120)(85,175,134,101)(86,180,135,106)(87,185,136,111)(88,190,137,116)(89,171,138,97)(90,176,139,102)(91,181,140,107)(92,186,141,112)(93,191,142,117)(94,172,143,98)(95,177,144,103)(96,182,121,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,143,62,94)(2,138,63,89)(3,133,64,84)(4,128,65,79)(5,123,66,74)(6,142,67,93)(7,137,68,88)(8,132,69,83)(9,127,70,78)(10,122,71,73)(11,141,72,92)(12,136,49,87)(13,131,50,82)(14,126,51,77)(15,121,52,96)(16,140,53,91)(17,135,54,86)(18,130,55,81)(19,125,56,76)(20,144,57,95)(21,139,58,90)(22,134,59,85)(23,129,60,80)(24,124,61,75)(25,182,166,108)(26,177,167,103)(27,172,168,98)(28,191,145,117)(29,186,146,112)(30,181,147,107)(31,176,148,102)(32,171,149,97)(33,190,150,116)(34,185,151,111)(35,180,152,106)(36,175,153,101)(37,170,154,120)(38,189,155,115)(39,184,156,110)(40,179,157,105)(41,174,158,100)(42,169,159,119)(43,188,160,114)(44,183,161,109)(45,178,162,104)(46,173,163,99)(47,192,164,118)(48,187,165,113), (1,27,62,168)(2,32,63,149)(3,37,64,154)(4,42,65,159)(5,47,66,164)(6,28,67,145)(7,33,68,150)(8,38,69,155)(9,43,70,160)(10,48,71,165)(11,29,72,146)(12,34,49,151)(13,39,50,156)(14,44,51,161)(15,25,52,166)(16,30,53,147)(17,35,54,152)(18,40,55,157)(19,45,56,162)(20,26,57,167)(21,31,58,148)(22,36,59,153)(23,41,60,158)(24,46,61,163)(73,187,122,113)(74,192,123,118)(75,173,124,99)(76,178,125,104)(77,183,126,109)(78,188,127,114)(79,169,128,119)(80,174,129,100)(81,179,130,105)(82,184,131,110)(83,189,132,115)(84,170,133,120)(85,175,134,101)(86,180,135,106)(87,185,136,111)(88,190,137,116)(89,171,138,97)(90,176,139,102)(91,181,140,107)(92,186,141,112)(93,191,142,117)(94,172,143,98)(95,177,144,103)(96,182,121,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,143,62,94),(2,138,63,89),(3,133,64,84),(4,128,65,79),(5,123,66,74),(6,142,67,93),(7,137,68,88),(8,132,69,83),(9,127,70,78),(10,122,71,73),(11,141,72,92),(12,136,49,87),(13,131,50,82),(14,126,51,77),(15,121,52,96),(16,140,53,91),(17,135,54,86),(18,130,55,81),(19,125,56,76),(20,144,57,95),(21,139,58,90),(22,134,59,85),(23,129,60,80),(24,124,61,75),(25,182,166,108),(26,177,167,103),(27,172,168,98),(28,191,145,117),(29,186,146,112),(30,181,147,107),(31,176,148,102),(32,171,149,97),(33,190,150,116),(34,185,151,111),(35,180,152,106),(36,175,153,101),(37,170,154,120),(38,189,155,115),(39,184,156,110),(40,179,157,105),(41,174,158,100),(42,169,159,119),(43,188,160,114),(44,183,161,109),(45,178,162,104),(46,173,163,99),(47,192,164,118),(48,187,165,113)], [(1,27,62,168),(2,32,63,149),(3,37,64,154),(4,42,65,159),(5,47,66,164),(6,28,67,145),(7,33,68,150),(8,38,69,155),(9,43,70,160),(10,48,71,165),(11,29,72,146),(12,34,49,151),(13,39,50,156),(14,44,51,161),(15,25,52,166),(16,30,53,147),(17,35,54,152),(18,40,55,157),(19,45,56,162),(20,26,57,167),(21,31,58,148),(22,36,59,153),(23,41,60,158),(24,46,61,163),(73,187,122,113),(74,192,123,118),(75,173,124,99),(76,178,125,104),(77,183,126,109),(78,188,127,114),(79,169,128,119),(80,174,129,100),(81,179,130,105),(82,184,131,110),(83,189,132,115),(84,170,133,120),(85,175,134,101),(86,180,135,106),(87,185,136,111),(88,190,137,116),(89,171,138,97),(90,176,139,102),(91,181,140,107),(92,186,141,112),(93,191,142,117),(94,172,143,98),(95,177,144,103),(96,182,121,108)]])

Matrix representation of C243Q8 in GL6(𝔽73)

51170000
23220000
0034393934
003468395
0034393439
0034683468
,
7220000
7210000
0061603325
00131488
0033251213
004886072
,
51170000
23220000
0049241111
004824062
0062624924
000114824

G:=sub<GL(6,GF(73))| [51,23,0,0,0,0,17,22,0,0,0,0,0,0,34,34,34,34,0,0,39,68,39,68,0,0,39,39,34,34,0,0,34,5,39,68],[72,72,0,0,0,0,2,1,0,0,0,0,0,0,61,13,33,48,0,0,60,1,25,8,0,0,33,48,12,60,0,0,25,8,13,72],[51,23,0,0,0,0,17,22,0,0,0,0,0,0,49,48,62,0,0,0,24,24,62,11,0,0,11,0,49,48,0,0,11,62,24,24] >;

C243Q8 in GAP, Magma, Sage, TeX

C_{24}\rtimes_3Q_8
% in TeX

G:=Group("C24:3Q8");
// GroupNames label

G:=SmallGroup(192,415);
// by ID

G=gap.SmallGroup(192,415);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,477,120,254,555,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=1,c^2=b^2,b*a*b^-1=a^19,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C243Q8 in TeX

׿
×
𝔽