Copied to
clipboard

G = C244Q8order 192 = 26·3

4th semidirect product of C24 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C244Q8, C83Dic6, C3⋊C82Q8, C33(C8⋊Q8), C4⋊C4.44D6, (C2×C8).64D6, C12⋊Q8.9C2, C4.27(S3×Q8), C2.D8.8S3, C6.17(C4⋊Q8), C12.59(C2×Q8), C24⋊C4.3C2, C2.12(C12⋊Q8), C8⋊Dic3.10C2, C4.24(C2×Dic6), C6.Q16.9C2, C2.21(D8⋊S3), C6.39(C8⋊C22), (C2×Dic3).46D4, C22.225(S3×D4), C4.Dic6.7C2, C12.Q8.7C2, (C2×C24).142C22, (C2×C12).292C23, C2.20(Q16⋊S3), C6.67(C8.C22), C4⋊Dic3.118C22, (C4×Dic3).35C22, (C3×C2.D8).7C2, (C2×C6).297(C2×D4), (C2×C3⋊C8).66C22, (C3×C4⋊C4).85C22, (C2×C4).395(C22×S3), SmallGroup(192,435)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C244Q8
C1C3C6C2×C6C2×C12C4×Dic3C24⋊C4 — C244Q8
C3C6C2×C12 — C244Q8
C1C22C2×C4C2.D8

Generators and relations for C244Q8
 G = < a,b,c | a24=b4=1, c2=b2, bab-1=a7, cac-1=a5, cbc-1=b-1 >

Subgroups: 240 in 90 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C3, C4, C4, C22, C6, C8, C8, C2×C4, C2×C4, Q8, Dic3, C12, C12, C2×C6, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C3⋊C8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C8⋊C4, C4.Q8, C2.D8, C2.D8, C42.C2, C4⋊Q8, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, C3×C4⋊C4, C2×C24, C2×Dic6, C8⋊Q8, C6.Q16, C12.Q8, C24⋊C4, C8⋊Dic3, C3×C2.D8, C12⋊Q8, C4.Dic6, C244Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, C22×S3, C4⋊Q8, C8⋊C22, C8.C22, C2×Dic6, S3×D4, S3×Q8, C8⋊Q8, C12⋊Q8, D8⋊S3, Q16⋊S3, C244Q8

Character table of C244Q8

 class 12A2B2C34A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111122288121224242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111111-11111-1111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ31111111-11-1-1-11111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ4111111111-1-1-1-111111-1-11111111111    linear of order 2
ρ511111111-1-1-11-1111-1-11111-1-111-1-1-1-1    linear of order 2
ρ61111111-1-1-1-11111111-1-111-1-1-1-11111    linear of order 2
ρ71111111-1-111-1-1111111111-1-1-1-11111    linear of order 2
ρ811111111-111-11111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ922222-2-200-22002220000-2-200000000    orthogonal lifted from D4
ρ1022222-2-2002-2002220000-2-200000000    orthogonal lifted from D4
ρ112222-122220000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122222-122-2-20000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ132222-122-220000-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ142222-1222-20000-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ152-2-222-22000000-2-2200-22-2200000000    symplectic lifted from Q8, Schur index 2
ρ162-2-2222-2000000-2-222-2002-200002-2-22    symplectic lifted from Q8, Schur index 2
ρ172-2-222-22000000-2-22002-2-2200000000    symplectic lifted from Q8, Schur index 2
ρ182-2-2222-2000000-2-22-22002-20000-222-2    symplectic lifted from Q8, Schur index 2
ρ192-2-22-12-200000011-12-200-113-3-33-111-1    symplectic lifted from Dic6, Schur index 2
ρ202-2-22-12-200000011-12-200-11-333-3-111-1    symplectic lifted from Dic6, Schur index 2
ρ212-2-22-12-200000011-1-2200-11-33-331-1-11    symplectic lifted from Dic6, Schur index 2
ρ222-2-22-12-200000011-1-2200-113-33-31-1-11    symplectic lifted from Dic6, Schur index 2
ρ234444-2-4-4000000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ244-44-44000000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ254-4-44-2-4400000022-200002-200000000    symplectic lifted from S3×Q8, Schur index 2
ρ2644-4-4400000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2744-4-4-2000000002-220000000000-6--6-6--6    complex lifted from Q16⋊S3
ρ2844-4-4-2000000002-220000000000--6-6--6-6    complex lifted from Q16⋊S3
ρ294-44-4-200000000-2220000000000-6-6--6--6    complex lifted from D8⋊S3
ρ304-44-4-200000000-2220000000000--6--6-6-6    complex lifted from D8⋊S3

Smallest permutation representation of C244Q8
Regular action on 192 points
Generators in S192
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 63 115 27)(2 70 116 34)(3 53 117 41)(4 60 118 48)(5 67 119 31)(6 50 120 38)(7 57 97 45)(8 64 98 28)(9 71 99 35)(10 54 100 42)(11 61 101 25)(12 68 102 32)(13 51 103 39)(14 58 104 46)(15 65 105 29)(16 72 106 36)(17 55 107 43)(18 62 108 26)(19 69 109 33)(20 52 110 40)(21 59 111 47)(22 66 112 30)(23 49 113 37)(24 56 114 44)(73 135 159 188)(74 142 160 171)(75 125 161 178)(76 132 162 185)(77 139 163 192)(78 122 164 175)(79 129 165 182)(80 136 166 189)(81 143 167 172)(82 126 168 179)(83 133 145 186)(84 140 146 169)(85 123 147 176)(86 130 148 183)(87 137 149 190)(88 144 150 173)(89 127 151 180)(90 134 152 187)(91 141 153 170)(92 124 154 177)(93 131 155 184)(94 138 156 191)(95 121 157 174)(96 128 158 181)
(1 176 115 123)(2 181 116 128)(3 186 117 133)(4 191 118 138)(5 172 119 143)(6 177 120 124)(7 182 97 129)(8 187 98 134)(9 192 99 139)(10 173 100 144)(11 178 101 125)(12 183 102 130)(13 188 103 135)(14 169 104 140)(15 174 105 121)(16 179 106 126)(17 184 107 131)(18 189 108 136)(19 170 109 141)(20 175 110 122)(21 180 111 127)(22 185 112 132)(23 190 113 137)(24 171 114 142)(25 75 61 161)(26 80 62 166)(27 85 63 147)(28 90 64 152)(29 95 65 157)(30 76 66 162)(31 81 67 167)(32 86 68 148)(33 91 69 153)(34 96 70 158)(35 77 71 163)(36 82 72 168)(37 87 49 149)(38 92 50 154)(39 73 51 159)(40 78 52 164)(41 83 53 145)(42 88 54 150)(43 93 55 155)(44 74 56 160)(45 79 57 165)(46 84 58 146)(47 89 59 151)(48 94 60 156)

G:=sub<Sym(192)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,63,115,27)(2,70,116,34)(3,53,117,41)(4,60,118,48)(5,67,119,31)(6,50,120,38)(7,57,97,45)(8,64,98,28)(9,71,99,35)(10,54,100,42)(11,61,101,25)(12,68,102,32)(13,51,103,39)(14,58,104,46)(15,65,105,29)(16,72,106,36)(17,55,107,43)(18,62,108,26)(19,69,109,33)(20,52,110,40)(21,59,111,47)(22,66,112,30)(23,49,113,37)(24,56,114,44)(73,135,159,188)(74,142,160,171)(75,125,161,178)(76,132,162,185)(77,139,163,192)(78,122,164,175)(79,129,165,182)(80,136,166,189)(81,143,167,172)(82,126,168,179)(83,133,145,186)(84,140,146,169)(85,123,147,176)(86,130,148,183)(87,137,149,190)(88,144,150,173)(89,127,151,180)(90,134,152,187)(91,141,153,170)(92,124,154,177)(93,131,155,184)(94,138,156,191)(95,121,157,174)(96,128,158,181), (1,176,115,123)(2,181,116,128)(3,186,117,133)(4,191,118,138)(5,172,119,143)(6,177,120,124)(7,182,97,129)(8,187,98,134)(9,192,99,139)(10,173,100,144)(11,178,101,125)(12,183,102,130)(13,188,103,135)(14,169,104,140)(15,174,105,121)(16,179,106,126)(17,184,107,131)(18,189,108,136)(19,170,109,141)(20,175,110,122)(21,180,111,127)(22,185,112,132)(23,190,113,137)(24,171,114,142)(25,75,61,161)(26,80,62,166)(27,85,63,147)(28,90,64,152)(29,95,65,157)(30,76,66,162)(31,81,67,167)(32,86,68,148)(33,91,69,153)(34,96,70,158)(35,77,71,163)(36,82,72,168)(37,87,49,149)(38,92,50,154)(39,73,51,159)(40,78,52,164)(41,83,53,145)(42,88,54,150)(43,93,55,155)(44,74,56,160)(45,79,57,165)(46,84,58,146)(47,89,59,151)(48,94,60,156)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,63,115,27)(2,70,116,34)(3,53,117,41)(4,60,118,48)(5,67,119,31)(6,50,120,38)(7,57,97,45)(8,64,98,28)(9,71,99,35)(10,54,100,42)(11,61,101,25)(12,68,102,32)(13,51,103,39)(14,58,104,46)(15,65,105,29)(16,72,106,36)(17,55,107,43)(18,62,108,26)(19,69,109,33)(20,52,110,40)(21,59,111,47)(22,66,112,30)(23,49,113,37)(24,56,114,44)(73,135,159,188)(74,142,160,171)(75,125,161,178)(76,132,162,185)(77,139,163,192)(78,122,164,175)(79,129,165,182)(80,136,166,189)(81,143,167,172)(82,126,168,179)(83,133,145,186)(84,140,146,169)(85,123,147,176)(86,130,148,183)(87,137,149,190)(88,144,150,173)(89,127,151,180)(90,134,152,187)(91,141,153,170)(92,124,154,177)(93,131,155,184)(94,138,156,191)(95,121,157,174)(96,128,158,181), (1,176,115,123)(2,181,116,128)(3,186,117,133)(4,191,118,138)(5,172,119,143)(6,177,120,124)(7,182,97,129)(8,187,98,134)(9,192,99,139)(10,173,100,144)(11,178,101,125)(12,183,102,130)(13,188,103,135)(14,169,104,140)(15,174,105,121)(16,179,106,126)(17,184,107,131)(18,189,108,136)(19,170,109,141)(20,175,110,122)(21,180,111,127)(22,185,112,132)(23,190,113,137)(24,171,114,142)(25,75,61,161)(26,80,62,166)(27,85,63,147)(28,90,64,152)(29,95,65,157)(30,76,66,162)(31,81,67,167)(32,86,68,148)(33,91,69,153)(34,96,70,158)(35,77,71,163)(36,82,72,168)(37,87,49,149)(38,92,50,154)(39,73,51,159)(40,78,52,164)(41,83,53,145)(42,88,54,150)(43,93,55,155)(44,74,56,160)(45,79,57,165)(46,84,58,146)(47,89,59,151)(48,94,60,156) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,63,115,27),(2,70,116,34),(3,53,117,41),(4,60,118,48),(5,67,119,31),(6,50,120,38),(7,57,97,45),(8,64,98,28),(9,71,99,35),(10,54,100,42),(11,61,101,25),(12,68,102,32),(13,51,103,39),(14,58,104,46),(15,65,105,29),(16,72,106,36),(17,55,107,43),(18,62,108,26),(19,69,109,33),(20,52,110,40),(21,59,111,47),(22,66,112,30),(23,49,113,37),(24,56,114,44),(73,135,159,188),(74,142,160,171),(75,125,161,178),(76,132,162,185),(77,139,163,192),(78,122,164,175),(79,129,165,182),(80,136,166,189),(81,143,167,172),(82,126,168,179),(83,133,145,186),(84,140,146,169),(85,123,147,176),(86,130,148,183),(87,137,149,190),(88,144,150,173),(89,127,151,180),(90,134,152,187),(91,141,153,170),(92,124,154,177),(93,131,155,184),(94,138,156,191),(95,121,157,174),(96,128,158,181)], [(1,176,115,123),(2,181,116,128),(3,186,117,133),(4,191,118,138),(5,172,119,143),(6,177,120,124),(7,182,97,129),(8,187,98,134),(9,192,99,139),(10,173,100,144),(11,178,101,125),(12,183,102,130),(13,188,103,135),(14,169,104,140),(15,174,105,121),(16,179,106,126),(17,184,107,131),(18,189,108,136),(19,170,109,141),(20,175,110,122),(21,180,111,127),(22,185,112,132),(23,190,113,137),(24,171,114,142),(25,75,61,161),(26,80,62,166),(27,85,63,147),(28,90,64,152),(29,95,65,157),(30,76,66,162),(31,81,67,167),(32,86,68,148),(33,91,69,153),(34,96,70,158),(35,77,71,163),(36,82,72,168),(37,87,49,149),(38,92,50,154),(39,73,51,159),(40,78,52,164),(41,83,53,145),(42,88,54,150),(43,93,55,155),(44,74,56,160),(45,79,57,165),(46,84,58,146),(47,89,59,151),(48,94,60,156)]])

Matrix representation of C244Q8 in GL6(𝔽73)

61720000
72120000
0042314231
0042114211
0031424231
0031624211
,
0720000
100000
0014122128
006124566
0021285961
0045661271
,
61720000
72120000
0025412834
001648645
0045392541
0067281648

G:=sub<GL(6,GF(73))| [61,72,0,0,0,0,72,12,0,0,0,0,0,0,42,42,31,31,0,0,31,11,42,62,0,0,42,42,42,42,0,0,31,11,31,11],[0,1,0,0,0,0,72,0,0,0,0,0,0,0,14,61,21,45,0,0,12,2,28,66,0,0,21,45,59,12,0,0,28,66,61,71],[61,72,0,0,0,0,72,12,0,0,0,0,0,0,25,16,45,67,0,0,41,48,39,28,0,0,28,6,25,16,0,0,34,45,41,48] >;

C244Q8 in GAP, Magma, Sage, TeX

C_{24}\rtimes_4Q_8
% in TeX

G:=Group("C24:4Q8");
// GroupNames label

G:=SmallGroup(192,435);
// by ID

G=gap.SmallGroup(192,435);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,477,120,254,219,58,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=1,c^2=b^2,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C244Q8 in TeX

׿
×
𝔽