Copied to
clipboard

G = C3×C8.Q8order 192 = 26·3

Direct product of C3 and C8.Q8

direct product, metacyclic, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C8.Q8, C483C4, C161C12, C24.9Q8, C12.44SD16, M5(2).1C6, C8.(C3×Q8), C4.Q8.1C6, C8.18(C2×C12), C24.86(C2×C4), C12.55(C4⋊C4), C4.9(C3×SD16), C8.C4.2C6, (C2×C12).282D4, (C2×C6).26SD16, C6.10(C4.Q8), (C3×M5(2)).3C2, C22.5(C3×SD16), (C2×C24).196C22, C4.6(C3×C4⋊C4), C2.3(C3×C4.Q8), (C2×C8).15(C2×C6), (C2×C4).13(C3×D4), (C3×C4.Q8).6C2, (C3×C8.C4).5C2, SmallGroup(192,171)

Series: Derived Chief Lower central Upper central

C1C8 — C3×C8.Q8
C1C2C4C2×C4C2×C8C2×C24C3×C4.Q8 — C3×C8.Q8
C1C2C4C8 — C3×C8.Q8
C1C6C2×C12C2×C24 — C3×C8.Q8

Generators and relations for C3×C8.Q8
 G = < a,b,c,d | a3=b8=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b3, dcd-1=b4c3 >

2C2
8C4
2C6
4C8
4C2×C4
8C12
2M4(2)
2C4⋊C4
4C2×C12
4C24
2C3×M4(2)
2C3×C4⋊C4

Smallest permutation representation of C3×C8.Q8
On 48 points
Generators in S48
(1 30 36)(2 31 37)(3 32 38)(4 17 39)(5 18 40)(6 19 41)(7 20 42)(8 21 43)(9 22 44)(10 23 45)(11 24 46)(12 25 47)(13 26 48)(14 27 33)(15 28 34)(16 29 35)
(1 3 5 7 9 11 13 15)(2 12 6 16 10 4 14 8)(17 27 21 31 25 19 29 23)(18 20 22 24 26 28 30 32)(33 43 37 47 41 35 45 39)(34 36 38 40 42 44 46 48)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 4 10 12)(3 7)(5 13)(6 16 14 8)(11 15)(17 23 25 31)(18 26)(19 29 27 21)(20 32)(24 28)(33 43 41 35)(34 46)(37 39 45 47)(38 42)(40 48)

G:=sub<Sym(48)| (1,30,36)(2,31,37)(3,32,38)(4,17,39)(5,18,40)(6,19,41)(7,20,42)(8,21,43)(9,22,44)(10,23,45)(11,24,46)(12,25,47)(13,26,48)(14,27,33)(15,28,34)(16,29,35), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,23,25,31)(18,26)(19,29,27,21)(20,32)(24,28)(33,43,41,35)(34,46)(37,39,45,47)(38,42)(40,48)>;

G:=Group( (1,30,36)(2,31,37)(3,32,38)(4,17,39)(5,18,40)(6,19,41)(7,20,42)(8,21,43)(9,22,44)(10,23,45)(11,24,46)(12,25,47)(13,26,48)(14,27,33)(15,28,34)(16,29,35), (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,4,10,12)(3,7)(5,13)(6,16,14,8)(11,15)(17,23,25,31)(18,26)(19,29,27,21)(20,32)(24,28)(33,43,41,35)(34,46)(37,39,45,47)(38,42)(40,48) );

G=PermutationGroup([[(1,30,36),(2,31,37),(3,32,38),(4,17,39),(5,18,40),(6,19,41),(7,20,42),(8,21,43),(9,22,44),(10,23,45),(11,24,46),(12,25,47),(13,26,48),(14,27,33),(15,28,34),(16,29,35)], [(1,3,5,7,9,11,13,15),(2,12,6,16,10,4,14,8),(17,27,21,31,25,19,29,23),(18,20,22,24,26,28,30,32),(33,43,37,47,41,35,45,39),(34,36,38,40,42,44,46,48)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,4,10,12),(3,7),(5,13),(6,16,14,8),(11,15),(17,23,25,31),(18,26),(19,29,27,21),(20,32),(24,28),(33,43,41,35),(34,46),(37,39,45,47),(38,42),(40,48)]])

48 conjugacy classes

class 1 2A2B3A3B4A4B4C4D6A6B6C6D8A8B8C8D8E12A12B12C12D12E12F12G12H16A16B16C16D24A24B24C24D24E24F24G24H24I24J48A···48H
order1223344446666888881212121212121212161616162424242424242424242448···48
size11211228811222248822228888444422224488884···4

48 irreducible representations

dim11111111112222222244
type++++-+
imageC1C2C2C2C3C4C6C6C6C12Q8D4SD16SD16C3×Q8C3×D4C3×SD16C3×SD16C8.Q8C3×C8.Q8
kernelC3×C8.Q8C3×C4.Q8C3×C8.C4C3×M5(2)C8.Q8C48C4.Q8C8.C4M5(2)C16C24C2×C12C12C2×C6C8C2×C4C4C22C3C1
# reps11112422281122224424

Matrix representation of C3×C8.Q8 in GL4(𝔽97) generated by

61000
06100
00610
00061
,
574000
575700
004057
004040
,
0010
0001
574000
575700
,
1000
09600
004057
005757
G:=sub<GL(4,GF(97))| [61,0,0,0,0,61,0,0,0,0,61,0,0,0,0,61],[57,57,0,0,40,57,0,0,0,0,40,40,0,0,57,40],[0,0,57,57,0,0,40,57,1,0,0,0,0,1,0,0],[1,0,0,0,0,96,0,0,0,0,40,57,0,0,57,57] >;

C3×C8.Q8 in GAP, Magma, Sage, TeX

C_3\times C_8.Q_8
% in TeX

G:=Group("C3xC8.Q8");
// GroupNames label

G:=SmallGroup(192,171);
// by ID

G=gap.SmallGroup(192,171);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,92,1683,136,2111,6053,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^3,d*c*d^-1=b^4*c^3>;
// generators/relations

Export

Subgroup lattice of C3×C8.Q8 in TeX

׿
×
𝔽