extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊Q8)⋊1C2 = C12⋊5SD16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):1C2 | 192,642 |
(C3×C4⋊Q8)⋊2C2 = D12⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):2C2 | 192,643 |
(C3×C4⋊Q8)⋊3C2 = C12⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):3C2 | 192,644 |
(C3×C4⋊Q8)⋊4C2 = C42.80D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):4C2 | 192,645 |
(C3×C4⋊Q8)⋊5C2 = D12⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):5C2 | 192,646 |
(C3×C4⋊Q8)⋊6C2 = C12.D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):6C2 | 192,647 |
(C3×C4⋊Q8)⋊7C2 = C42.82D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):7C2 | 192,648 |
(C3×C4⋊Q8)⋊8C2 = D12.15D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 48 | 4 | (C3xC4:Q8):8C2 | 192,654 |
(C3×C4⋊Q8)⋊9C2 = S3×C4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):9C2 | 192,1282 |
(C3×C4⋊Q8)⋊10C2 = C42.171D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):10C2 | 192,1283 |
(C3×C4⋊Q8)⋊11C2 = C42.240D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):11C2 | 192,1284 |
(C3×C4⋊Q8)⋊12C2 = D12⋊12D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):12C2 | 192,1285 |
(C3×C4⋊Q8)⋊13C2 = D12⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):13C2 | 192,1286 |
(C3×C4⋊Q8)⋊14C2 = C42.241D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):14C2 | 192,1287 |
(C3×C4⋊Q8)⋊15C2 = C42.174D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):15C2 | 192,1288 |
(C3×C4⋊Q8)⋊16C2 = D12⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):16C2 | 192,1289 |
(C3×C4⋊Q8)⋊17C2 = C42.176D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):17C2 | 192,1290 |
(C3×C4⋊Q8)⋊18C2 = C42.177D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):18C2 | 192,1291 |
(C3×C4⋊Q8)⋊19C2 = C42.178D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):19C2 | 192,1292 |
(C3×C4⋊Q8)⋊20C2 = C42.179D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):20C2 | 192,1293 |
(C3×C4⋊Q8)⋊21C2 = C42.180D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):21C2 | 192,1294 |
(C3×C4⋊Q8)⋊22C2 = C3×D4.10D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 48 | 4 | (C3xC4:Q8):22C2 | 192,889 |
(C3×C4⋊Q8)⋊23C2 = C3×D4.D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):23C2 | 192,894 |
(C3×C4⋊Q8)⋊24C2 = C3×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):24C2 | 192,907 |
(C3×C4⋊Q8)⋊25C2 = C3×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):25C2 | 192,909 |
(C3×C4⋊Q8)⋊26C2 = C3×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):26C2 | 192,919 |
(C3×C4⋊Q8)⋊27C2 = C3×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):27C2 | 192,922 |
(C3×C4⋊Q8)⋊28C2 = C3×C8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):28C2 | 192,925 |
(C3×C4⋊Q8)⋊29C2 = C3×C8.2D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):29C2 | 192,930 |
(C3×C4⋊Q8)⋊30C2 = C3×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):30C2 | 192,1425 |
(C3×C4⋊Q8)⋊31C2 = C3×C22.35C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):31C2 | 192,1430 |
(C3×C4⋊Q8)⋊32C2 = C3×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):32C2 | 192,1431 |
(C3×C4⋊Q8)⋊33C2 = C3×C23.41C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):33C2 | 192,1433 |
(C3×C4⋊Q8)⋊34C2 = C3×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):34C2 | 192,1436 |
(C3×C4⋊Q8)⋊35C2 = C3×D4×Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):35C2 | 192,1438 |
(C3×C4⋊Q8)⋊36C2 = C3×D4⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):36C2 | 192,1443 |
(C3×C4⋊Q8)⋊37C2 = C3×C22.49C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):37C2 | 192,1444 |
(C3×C4⋊Q8)⋊38C2 = C3×C22.50C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):38C2 | 192,1445 |
(C3×C4⋊Q8)⋊39C2 = C3×C22.57C24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 96 | | (C3xC4:Q8):39C2 | 192,1452 |
(C3×C4⋊Q8)⋊40C2 = C3×C22.26C24 | φ: trivial image | 96 | | (C3xC4:Q8):40C2 | 192,1421 |
(C3×C4⋊Q8)⋊41C2 = C3×C23.37C23 | φ: trivial image | 96 | | (C3xC4:Q8):41C2 | 192,1422 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊Q8).1C2 = C12.5Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).1C2 | 192,105 |
(C3×C4⋊Q8).2C2 = C12.10D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).2C2 | 192,106 |
(C3×C4⋊Q8).3C2 = C42.3Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 48 | 4 | (C3xC4:Q8).3C2 | 192,107 |
(C3×C4⋊Q8).4C2 = C12.17D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).4C2 | 192,637 |
(C3×C4⋊Q8).5C2 = C12.9Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).5C2 | 192,638 |
(C3×C4⋊Q8).6C2 = C12.SD16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).6C2 | 192,639 |
(C3×C4⋊Q8).7C2 = C42.76D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).7C2 | 192,640 |
(C3×C4⋊Q8).8C2 = C42.77D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).8C2 | 192,641 |
(C3×C4⋊Q8).9C2 = C12⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).9C2 | 192,649 |
(C3×C4⋊Q8).10C2 = Dic6⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).10C2 | 192,650 |
(C3×C4⋊Q8).11C2 = C12⋊3Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).11C2 | 192,651 |
(C3×C4⋊Q8).12C2 = C12.Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).12C2 | 192,652 |
(C3×C4⋊Q8).13C2 = Dic6⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).13C2 | 192,653 |
(C3×C4⋊Q8).14C2 = Dic6⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).14C2 | 192,1280 |
(C3×C4⋊Q8).15C2 = Dic6⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).15C2 | 192,1281 |
(C3×C4⋊Q8).16C2 = C3×C4.10D8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).16C2 | 192,138 |
(C3×C4⋊Q8).17C2 = C3×C4.6Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).17C2 | 192,139 |
(C3×C4⋊Q8).18C2 = C3×C42.3C4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 48 | 4 | (C3xC4:Q8).18C2 | 192,162 |
(C3×C4⋊Q8).19C2 = C3×C4⋊2Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).19C2 | 192,895 |
(C3×C4⋊Q8).20C2 = C3×Q8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).20C2 | 192,908 |
(C3×C4⋊Q8).21C2 = C3×C4.Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).21C2 | 192,910 |
(C3×C4⋊Q8).22C2 = C3×C4.SD16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).22C2 | 192,920 |
(C3×C4⋊Q8).23C2 = C3×C42.30C22 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).23C2 | 192,924 |
(C3×C4⋊Q8).24C2 = C3×C4⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).24C2 | 192,927 |
(C3×C4⋊Q8).25C2 = C3×C8⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).25C2 | 192,931 |
(C3×C4⋊Q8).26C2 = C3×C8⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).26C2 | 192,933 |
(C3×C4⋊Q8).27C2 = C3×C8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).27C2 | 192,934 |
(C3×C4⋊Q8).28C2 = C3×Q8⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).28C2 | 192,1446 |
(C3×C4⋊Q8).29C2 = C3×Q82 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Q8 | 192 | | (C3xC4:Q8).29C2 | 192,1447 |