Copied to
clipboard

G = D1212D4order 192 = 26·3

5th semidirect product of D12 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D1212D4, C42.172D6, C6.352- 1+4, C4⋊Q810S3, C4.73(S3×D4), (C4×D12)⋊51C2, C127(C4○D4), C37(D46D4), C4⋊C4.123D6, D6.25(C2×D4), C12.71(C2×D4), C12⋊D440C2, D63Q835C2, C42(Q83S3), (C2×Q8).169D6, D6.D446C2, (C2×C6).270C24, C6.100(C22×D4), (C2×C12).103C23, (C4×C12).211C22, D6⋊C4.151C22, (C6×Q8).137C22, (C2×D12).271C22, Dic3⋊C4.60C22, C4⋊Dic3.384C22, C22.291(S3×C23), (C22×S3).231C23, C2.36(Q8.15D6), (C2×Dic3).141C23, (S3×C4⋊C4)⋊44C2, C2.73(C2×S3×D4), (C3×C4⋊Q8)⋊12C2, C6.121(C2×C4○D4), (C2×Q83S3)⋊13C2, (S3×C2×C4).144C22, (C2×C4).93(C22×S3), C2.28(C2×Q83S3), (C3×C4⋊C4).213C22, SmallGroup(192,1285)

Series: Derived Chief Lower central Upper central

C1C2×C6 — D1212D4
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — D1212D4
C3C2×C6 — D1212D4
C1C22C4⋊Q8

Generators and relations for D1212D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, ac=ca, dad=a5, bc=cb, dbd=a10b, dcd=c-1 >

Subgroups: 768 in 292 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4×S3, D12, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C4⋊Q8, C2×C4○D4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, S3×C2×C4, C2×D12, C2×D12, Q83S3, C6×Q8, D46D4, C4×D12, S3×C4⋊C4, D6.D4, C12⋊D4, D63Q8, C3×C4⋊Q8, C2×Q83S3, D1212D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, 2- 1+4, S3×D4, Q83S3, S3×C23, D46D4, C2×S3×D4, C2×Q83S3, Q8.15D6, D1212D4

Smallest permutation representation of D1212D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 14)(2 13)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 18)(10 17)(11 16)(12 15)(25 63)(26 62)(27 61)(28 72)(29 71)(30 70)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(48 60)(73 87)(74 86)(75 85)(76 96)(77 95)(78 94)(79 93)(80 92)(81 91)(82 90)(83 89)(84 88)
(1 73 48 68)(2 74 37 69)(3 75 38 70)(4 76 39 71)(5 77 40 72)(6 78 41 61)(7 79 42 62)(8 80 43 63)(9 81 44 64)(10 82 45 65)(11 83 46 66)(12 84 47 67)(13 86 59 31)(14 87 60 32)(15 88 49 33)(16 89 50 34)(17 90 51 35)(18 91 52 36)(19 92 53 25)(20 93 54 26)(21 94 55 27)(22 95 56 28)(23 96 57 29)(24 85 58 30)
(1 48)(2 41)(3 46)(4 39)(5 44)(6 37)(7 42)(8 47)(9 40)(10 45)(11 38)(12 43)(13 57)(14 50)(15 55)(16 60)(17 53)(18 58)(19 51)(20 56)(21 49)(22 54)(23 59)(24 52)(25 35)(26 28)(27 33)(29 31)(30 36)(32 34)(61 69)(63 67)(64 72)(66 70)(74 78)(75 83)(77 81)(80 84)(85 91)(86 96)(87 89)(88 94)(90 92)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,14)(2,13)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(25,63)(26,62)(27,61)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(73,87)(74,86)(75,85)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88), (1,73,48,68)(2,74,37,69)(3,75,38,70)(4,76,39,71)(5,77,40,72)(6,78,41,61)(7,79,42,62)(8,80,43,63)(9,81,44,64)(10,82,45,65)(11,83,46,66)(12,84,47,67)(13,86,59,31)(14,87,60,32)(15,88,49,33)(16,89,50,34)(17,90,51,35)(18,91,52,36)(19,92,53,25)(20,93,54,26)(21,94,55,27)(22,95,56,28)(23,96,57,29)(24,85,58,30), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,57)(14,50)(15,55)(16,60)(17,53)(18,58)(19,51)(20,56)(21,49)(22,54)(23,59)(24,52)(25,35)(26,28)(27,33)(29,31)(30,36)(32,34)(61,69)(63,67)(64,72)(66,70)(74,78)(75,83)(77,81)(80,84)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,14)(2,13)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,18)(10,17)(11,16)(12,15)(25,63)(26,62)(27,61)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(48,60)(73,87)(74,86)(75,85)(76,96)(77,95)(78,94)(79,93)(80,92)(81,91)(82,90)(83,89)(84,88), (1,73,48,68)(2,74,37,69)(3,75,38,70)(4,76,39,71)(5,77,40,72)(6,78,41,61)(7,79,42,62)(8,80,43,63)(9,81,44,64)(10,82,45,65)(11,83,46,66)(12,84,47,67)(13,86,59,31)(14,87,60,32)(15,88,49,33)(16,89,50,34)(17,90,51,35)(18,91,52,36)(19,92,53,25)(20,93,54,26)(21,94,55,27)(22,95,56,28)(23,96,57,29)(24,85,58,30), (1,48)(2,41)(3,46)(4,39)(5,44)(6,37)(7,42)(8,47)(9,40)(10,45)(11,38)(12,43)(13,57)(14,50)(15,55)(16,60)(17,53)(18,58)(19,51)(20,56)(21,49)(22,54)(23,59)(24,52)(25,35)(26,28)(27,33)(29,31)(30,36)(32,34)(61,69)(63,67)(64,72)(66,70)(74,78)(75,83)(77,81)(80,84)(85,91)(86,96)(87,89)(88,94)(90,92)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,14),(2,13),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,18),(10,17),(11,16),(12,15),(25,63),(26,62),(27,61),(28,72),(29,71),(30,70),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(48,60),(73,87),(74,86),(75,85),(76,96),(77,95),(78,94),(79,93),(80,92),(81,91),(82,90),(83,89),(84,88)], [(1,73,48,68),(2,74,37,69),(3,75,38,70),(4,76,39,71),(5,77,40,72),(6,78,41,61),(7,79,42,62),(8,80,43,63),(9,81,44,64),(10,82,45,65),(11,83,46,66),(12,84,47,67),(13,86,59,31),(14,87,60,32),(15,88,49,33),(16,89,50,34),(17,90,51,35),(18,91,52,36),(19,92,53,25),(20,93,54,26),(21,94,55,27),(22,95,56,28),(23,96,57,29),(24,85,58,30)], [(1,48),(2,41),(3,46),(4,39),(5,44),(6,37),(7,42),(8,47),(9,40),(10,45),(11,38),(12,43),(13,57),(14,50),(15,55),(16,60),(17,53),(18,58),(19,51),(20,56),(21,49),(22,54),(23,59),(24,52),(25,35),(26,28),(27,33),(29,31),(30,36),(32,34),(61,69),(63,67),(64,72),(66,70),(74,78),(75,83),(77,81),(80,84),(85,91),(86,96),(87,89),(88,94),(90,92),(93,95)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E···4I4J4K4L4M4N4O6A6B6C12A···12F12G12H12I12J
order1222222222344444···444444466612···1212121212
size111166661212222224···4666612122224···48888

39 irreducible representations

dim111111112222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D6D6D6C4○D42- 1+4S3×D4Q83S3Q8.15D6
kernelD1212D4C4×D12S3×C4⋊C4D6.D4C12⋊D4D63Q8C3×C4⋊Q8C2×Q83S3C4⋊Q8D12C42C4⋊C4C2×Q8C12C6C4C4C2
# reps122422121414241222

Matrix representation of D1212D4 in GL6(𝔽13)

800000
050000
000100
0012100
0000120
0000012
,
010000
100000
0012100
000100
000010
000001
,
1200000
0120000
0012000
0001200
000052
000008
,
100000
0120000
000100
001000
0000120
000051

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,2,8],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,5,0,0,0,0,0,1] >;

D1212D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{12}D_4
% in TeX

G:=Group("D12:12D4");
// GroupNames label

G:=SmallGroup(192,1285);
// by ID

G=gap.SmallGroup(192,1285);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,1571,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽