Copied to
clipboard

G = D12.15D4order 192 = 26·3

15th non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.15D4, C42.86D6, Dic6.15D4, C4⋊Q88S3, C4.58(S3×D4), C12.41(C2×D4), (C2×C12).12D4, (C2×Q8).73D6, C6.54C22≀C2, C424S314C2, C12.10D46C2, Q8.11D63C2, C33(D4.10D4), (C6×Q8).67C22, C2.22(C232D6), (C4×C12).142C22, (C2×C12).413C23, C4○D12.22C22, Q8.15D6.2C2, C4.Dic3.15C22, (C3×C4⋊Q8)⋊8C2, (C2×C6).544(C2×D4), (C2×C4).11(C3⋊D4), C22.34(C2×C3⋊D4), (C2×C4).119(C22×S3), SmallGroup(192,654)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D12.15D4
C1C3C6C12C2×C12C4○D12Q8.15D6 — D12.15D4
C3C6C2×C12 — D12.15D4
C1C2C2×C4C4⋊Q8

Generators and relations for D12.15D4
 G = < a,b,c,d | a12=b2=d2=1, c4=a6, bab=cac-1=a-1, dad=a5, cbc-1=a7b, dbd=a10b, dcd=c3 >

Subgroups: 400 in 142 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, Q8, Dic3, C12, C12, D6, C2×C6, C42, C4⋊C4, M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, C3⋊C8, Dic6, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×Q8, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, C4.Dic3, Q82S3, C3⋊Q16, C4×C12, C3×C4⋊C4, C4○D12, C4○D12, S3×Q8, Q83S3, C6×Q8, D4.10D4, C424S3, C12.10D4, Q8.11D6, C3×C4⋊Q8, Q8.15D6, D12.15D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, S3×D4, C2×C3⋊D4, D4.10D4, C232D6, D12.15D4

Character table of D12.15D4

 class 12A2B2C2D34A4B4C4D4E4F4G4H4I6A6B6C8A8B12A12B12C12D12E12F12G12H12I12J
 size 112121222244448121222224244444448888
ρ1111111111111111111111111111111    trivial
ρ21111-1111-111-1-1-11111-11111111-1-1-1-1    linear of order 2
ρ3111-11111-111-1-11-11111-1111111-1-1-1-1    linear of order 2
ρ4111-1-111111111-1-1111-1-11111111111    linear of order 2
ρ5111-11111-1-1-1-111-1111-11-1-1-111-11-11-1    linear of order 2
ρ6111-1-11111-1-11-1-1-111111-1-1-111-1-11-11    linear of order 2
ρ7111111111-1-11-111111-1-1-1-1-111-1-11-11    linear of order 2
ρ81111-1111-1-1-1-11-111111-1-1-1-111-11-11-1    linear of order 2
ρ922-20-222-20000020-22-200000-2200000    orthogonal lifted from D4
ρ1022-20222-200000-20-22-200000-2200000    orthogonal lifted from D4
ρ1122-2202-22000000-2-22-2000002-200000    orthogonal lifted from D4
ρ12222002-2-2200-200022200000-2-20020-2    orthogonal lifted from D4
ρ13222002-2-2-200200022200000-2-200-202    orthogonal lifted from D4
ρ1422-2-202-220000002-22-2000002-200000    orthogonal lifted from D4
ρ1522200-122-222-2-200-1-1-100-1-1-1-1-1-11111    orthogonal lifted from D6
ρ1622200-1222222200-1-1-100-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1722200-122-2-2-2-2200-1-1-100111-1-11-11-11    orthogonal lifted from D6
ρ1822200-1222-2-22-200-1-1-100111-1-111-11-1    orthogonal lifted from D6
ρ1922200-1-2-2200-2000-1-1-100--3-3--311-3-3-1--31    complex lifted from C3⋊D4
ρ2022200-1-2-2200-2000-1-1-100-3--3-311--3--3-1-31    complex lifted from C3⋊D4
ρ2122200-1-2-2-2002000-1-1-100-3--3-311--3-31--3-1    complex lifted from C3⋊D4
ρ2222200-1-2-2-2002000-1-1-100--3-3--311-3--31-3-1    complex lifted from C3⋊D4
ρ2344-400-2-4400000002-2200000-2200000    orthogonal lifted from S3×D4
ρ2444-400-24-400000002-22000002-200000    orthogonal lifted from S3×D4
ρ254-40004000-2200000-4000-22200-20000    symplectic lifted from D4.10D4, Schur index 2
ρ264-400040002-200000-40002-2-20020000    symplectic lifted from D4.10D4, Schur index 2
ρ274-4000-20002-20000-2-322-300-1--31--31+-300-1+-30000    complex faithful
ρ284-4000-2000-220000-2-322-3001+-3-1+-3-1--3001--30000    complex faithful
ρ294-4000-2000-2200002-32-2-3001--3-1--3-1+-3001+-30000    complex faithful
ρ304-4000-20002-200002-32-2-300-1+-31+-31--300-1--30000    complex faithful

Smallest permutation representation of D12.15D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 28)(14 27)(15 26)(16 25)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)
(1 47 4 44 7 41 10 38)(2 46 5 43 8 40 11 37)(3 45 6 42 9 39 12 48)(13 35 16 32 19 29 22 26)(14 34 17 31 20 28 23 25)(15 33 18 30 21 27 24 36)
(1 26)(2 31)(3 36)(4 29)(5 34)(6 27)(7 32)(8 25)(9 30)(10 35)(11 28)(12 33)(13 44)(14 37)(15 42)(16 47)(17 40)(18 45)(19 38)(20 43)(21 48)(22 41)(23 46)(24 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,28),(14,27),(15,26),(16,25),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29)], [(1,47,4,44,7,41,10,38),(2,46,5,43,8,40,11,37),(3,45,6,42,9,39,12,48),(13,35,16,32,19,29,22,26),(14,34,17,31,20,28,23,25),(15,33,18,30,21,27,24,36)], [(1,26),(2,31),(3,36),(4,29),(5,34),(6,27),(7,32),(8,25),(9,30),(10,35),(11,28),(12,33),(13,44),(14,37),(15,42),(16,47),(17,40),(18,45),(19,38),(20,43),(21,48),(22,41),(23,46),(24,39)]])

Matrix representation of D12.15D4 in GL4(𝔽7) generated by

3436
3531
5356
6511
,
2602
2360
3644
3635
,
2445
6336
3014
1251
,
3666
2304
2606
4241
G:=sub<GL(4,GF(7))| [3,3,5,6,4,5,3,5,3,3,5,1,6,1,6,1],[2,2,3,3,6,3,6,6,0,6,4,3,2,0,4,5],[2,6,3,1,4,3,0,2,4,3,1,5,5,6,4,1],[3,2,2,4,6,3,6,2,6,0,0,4,6,4,6,1] >;

D12.15D4 in GAP, Magma, Sage, TeX

D_{12}._{15}D_4
% in TeX

G:=Group("D12.15D4");
// GroupNames label

G:=SmallGroup(192,654);
// by ID

G=gap.SmallGroup(192,654);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,184,1123,570,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=d^2=1,c^4=a^6,b*a*b=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^7*b,d*b*d=a^10*b,d*c*d=c^3>;
// generators/relations

Export

Character table of D12.15D4 in TeX

׿
×
𝔽