Copied to
clipboard

G = D129Q8order 192 = 26·3

7th semidirect product of D12 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D129Q8, C42.175D6, C6.832+ 1+4, C4⋊Q813S3, C4.19(S3×Q8), C4⋊C4.220D6, C38(D43Q8), D6.12(C2×Q8), C12.56(C2×Q8), D63Q837C2, C4.D1244C2, (C4×Dic6)⋊53C2, (C4×D12).27C2, (C2×Q8).111D6, C6.50(C22×Q8), (C2×C6).274C24, C4.Dic644C2, Dic35D4.14C2, C12.137(C4○D4), C2.87(D46D6), (C4×C12).215C22, (C2×C12).107C23, D6⋊C4.153C22, C4.40(Q83S3), (C6×Q8).141C22, (C2×D12).273C22, Dic3⋊C4.62C22, C4⋊Dic3.253C22, C22.295(S3×C23), (C22×S3).235C23, (C2×Dic6).303C22, (C2×Dic3).145C23, (C4×Dic3).163C22, (S3×C4⋊C4)⋊45C2, C2.33(C2×S3×Q8), (C3×C4⋊Q8)⋊16C2, C6.122(C2×C4○D4), (S3×C2×C4).147C22, C2.30(C2×Q83S3), (C3×C4⋊C4).217C22, (C2×C4).220(C22×S3), SmallGroup(192,1289)

Series: Derived Chief Lower central Upper central

C1C2×C6 — D129Q8
C1C3C6C2×C6C22×S3C2×D12C4×D12 — D129Q8
C3C2×C6 — D129Q8
C1C22C4⋊Q8

Generators and relations for D129Q8
 G = < a,b,c,d | a12=b2=c4=1, d2=c2, bab=a-1, cac-1=a7, ad=da, cbc-1=dbd-1=a6b, dcd-1=c-1 >

Subgroups: 544 in 228 conjugacy classes, 107 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C4×C12, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C6×Q8, D43Q8, C4×Dic6, C4×D12, C4.Dic6, S3×C4⋊C4, Dic35D4, C4.D12, D63Q8, C3×C4⋊Q8, D129Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C4○D4, C24, C22×S3, C22×Q8, C2×C4○D4, 2+ 1+4, S3×Q8, Q83S3, S3×C23, D43Q8, D46D6, C2×S3×Q8, C2×Q83S3, D129Q8

Smallest permutation representation of D129Q8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 17)(14 16)(18 24)(19 23)(20 22)(25 33)(26 32)(27 31)(28 30)(34 36)(37 41)(38 40)(42 48)(43 47)(44 46)(49 59)(50 58)(51 57)(52 56)(53 55)(61 65)(62 64)(66 72)(67 71)(68 70)(74 84)(75 83)(76 82)(77 81)(78 80)(85 95)(86 94)(87 93)(88 92)(89 91)
(1 25 38 65)(2 32 39 72)(3 27 40 67)(4 34 41 62)(5 29 42 69)(6 36 43 64)(7 31 44 71)(8 26 45 66)(9 33 46 61)(10 28 47 68)(11 35 48 63)(12 30 37 70)(13 55 77 85)(14 50 78 92)(15 57 79 87)(16 52 80 94)(17 59 81 89)(18 54 82 96)(19 49 83 91)(20 56 84 86)(21 51 73 93)(22 58 74 88)(23 53 75 95)(24 60 76 90)
(1 86 38 56)(2 87 39 57)(3 88 40 58)(4 89 41 59)(5 90 42 60)(6 91 43 49)(7 92 44 50)(8 93 45 51)(9 94 46 52)(10 95 47 53)(11 96 48 54)(12 85 37 55)(13 30 77 70)(14 31 78 71)(15 32 79 72)(16 33 80 61)(17 34 81 62)(18 35 82 63)(19 36 83 64)(20 25 84 65)(21 26 73 66)(22 27 74 67)(23 28 75 68)(24 29 76 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,41)(38,40)(42,48)(43,47)(44,46)(49,59)(50,58)(51,57)(52,56)(53,55)(61,65)(62,64)(66,72)(67,71)(68,70)(74,84)(75,83)(76,82)(77,81)(78,80)(85,95)(86,94)(87,93)(88,92)(89,91), (1,25,38,65)(2,32,39,72)(3,27,40,67)(4,34,41,62)(5,29,42,69)(6,36,43,64)(7,31,44,71)(8,26,45,66)(9,33,46,61)(10,28,47,68)(11,35,48,63)(12,30,37,70)(13,55,77,85)(14,50,78,92)(15,57,79,87)(16,52,80,94)(17,59,81,89)(18,54,82,96)(19,49,83,91)(20,56,84,86)(21,51,73,93)(22,58,74,88)(23,53,75,95)(24,60,76,90), (1,86,38,56)(2,87,39,57)(3,88,40,58)(4,89,41,59)(5,90,42,60)(6,91,43,49)(7,92,44,50)(8,93,45,51)(9,94,46,52)(10,95,47,53)(11,96,48,54)(12,85,37,55)(13,30,77,70)(14,31,78,71)(15,32,79,72)(16,33,80,61)(17,34,81,62)(18,35,82,63)(19,36,83,64)(20,25,84,65)(21,26,73,66)(22,27,74,67)(23,28,75,68)(24,29,76,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,17)(14,16)(18,24)(19,23)(20,22)(25,33)(26,32)(27,31)(28,30)(34,36)(37,41)(38,40)(42,48)(43,47)(44,46)(49,59)(50,58)(51,57)(52,56)(53,55)(61,65)(62,64)(66,72)(67,71)(68,70)(74,84)(75,83)(76,82)(77,81)(78,80)(85,95)(86,94)(87,93)(88,92)(89,91), (1,25,38,65)(2,32,39,72)(3,27,40,67)(4,34,41,62)(5,29,42,69)(6,36,43,64)(7,31,44,71)(8,26,45,66)(9,33,46,61)(10,28,47,68)(11,35,48,63)(12,30,37,70)(13,55,77,85)(14,50,78,92)(15,57,79,87)(16,52,80,94)(17,59,81,89)(18,54,82,96)(19,49,83,91)(20,56,84,86)(21,51,73,93)(22,58,74,88)(23,53,75,95)(24,60,76,90), (1,86,38,56)(2,87,39,57)(3,88,40,58)(4,89,41,59)(5,90,42,60)(6,91,43,49)(7,92,44,50)(8,93,45,51)(9,94,46,52)(10,95,47,53)(11,96,48,54)(12,85,37,55)(13,30,77,70)(14,31,78,71)(15,32,79,72)(16,33,80,61)(17,34,81,62)(18,35,82,63)(19,36,83,64)(20,25,84,65)(21,26,73,66)(22,27,74,67)(23,28,75,68)(24,29,76,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,17),(14,16),(18,24),(19,23),(20,22),(25,33),(26,32),(27,31),(28,30),(34,36),(37,41),(38,40),(42,48),(43,47),(44,46),(49,59),(50,58),(51,57),(52,56),(53,55),(61,65),(62,64),(66,72),(67,71),(68,70),(74,84),(75,83),(76,82),(77,81),(78,80),(85,95),(86,94),(87,93),(88,92),(89,91)], [(1,25,38,65),(2,32,39,72),(3,27,40,67),(4,34,41,62),(5,29,42,69),(6,36,43,64),(7,31,44,71),(8,26,45,66),(9,33,46,61),(10,28,47,68),(11,35,48,63),(12,30,37,70),(13,55,77,85),(14,50,78,92),(15,57,79,87),(16,52,80,94),(17,59,81,89),(18,54,82,96),(19,49,83,91),(20,56,84,86),(21,51,73,93),(22,58,74,88),(23,53,75,95),(24,60,76,90)], [(1,86,38,56),(2,87,39,57),(3,88,40,58),(4,89,41,59),(5,90,42,60),(6,91,43,49),(7,92,44,50),(8,93,45,51),(9,94,46,52),(10,95,47,53),(11,96,48,54),(12,85,37,55),(13,30,77,70),(14,31,78,71),(15,32,79,72),(16,33,80,61),(17,34,81,62),(18,35,82,63),(19,36,83,64),(20,25,84,65),(21,26,73,66),(22,27,74,67),(23,28,75,68),(24,29,76,69)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q6A6B6C12A···12F12G12H12I12J
order12222222344444···44444444466612···1212121212
size11116666222224···46666121212122224···48888

39 irreducible representations

dim1111111112222224444
type++++++++++-++++-+
imageC1C2C2C2C2C2C2C2C2S3Q8D6D6D6C4○D42+ 1+4S3×Q8Q83S3D46D6
kernelD129Q8C4×Dic6C4×D12C4.Dic6S3×C4⋊C4Dic35D4C4.D12D63Q8C3×C4⋊Q8C4⋊Q8D12C42C4⋊C4C2×Q8C12C6C4C4C2
# reps1112222411414241222

Matrix representation of D129Q8 in GL6(𝔽13)

8100000
050000
001100
0012000
000010
000001
,
1200000
1210000
00121200
000100
000010
000001
,
1110000
1120000
001000
000100
000001
0000120
,
8100000
050000
001000
000100
000043
000039

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,10,5,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[8,0,0,0,0,0,10,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,3,0,0,0,0,3,9] >;

D129Q8 in GAP, Magma, Sage, TeX

D_{12}\rtimes_9Q_8
% in TeX

G:=Group("D12:9Q8");
// GroupNames label

G:=SmallGroup(192,1289);
// by ID

G=gap.SmallGroup(192,1289);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,232,100,570,185,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d^-1=a^6*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽