extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic6)⋊1C2 = C4×C24⋊C2 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):1C2 | 192,250 |
(C4×Dic6)⋊2C2 = C42.16D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):2C2 | 192,269 |
(C4×Dic6)⋊3C2 = C42.274D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):3C2 | 192,1029 |
(C4×Dic6)⋊4C2 = C42.277D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):4C2 | 192,1038 |
(C4×Dic6)⋊5C2 = C42.87D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):5C2 | 192,1075 |
(C4×Dic6)⋊6C2 = C42.88D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):6C2 | 192,1076 |
(C4×Dic6)⋊7C2 = C42.89D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):7C2 | 192,1077 |
(C4×Dic6)⋊8C2 = C42.91D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):8C2 | 192,1082 |
(C4×Dic6)⋊9C2 = C42.93D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):9C2 | 192,1087 |
(C4×Dic6)⋊10C2 = C42.96D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):10C2 | 192,1090 |
(C4×Dic6)⋊11C2 = C42.98D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):11C2 | 192,1092 |
(C4×Dic6)⋊12C2 = C42.99D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):12C2 | 192,1093 |
(C4×Dic6)⋊13C2 = C42.159D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):13C2 | 192,1260 |
(C4×Dic6)⋊14C2 = C42.160D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):14C2 | 192,1261 |
(C4×Dic6)⋊15C2 = C42.162D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):15C2 | 192,1267 |
(C4×Dic6)⋊16C2 = C42.164D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):16C2 | 192,1269 |
(C4×Dic6)⋊17C2 = C42.36D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):17C2 | 192,404 |
(C4×Dic6)⋊18C2 = Dic6⋊8D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):18C2 | 192,407 |
(C4×Dic6)⋊19C2 = C4×D4.S3 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):19C2 | 192,576 |
(C4×Dic6)⋊20C2 = C42.51D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):20C2 | 192,577 |
(C4×Dic6)⋊21C2 = C42.61D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):21C2 | 192,613 |
(C4×Dic6)⋊22C2 = Dic6⋊9D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):22C2 | 192,634 |
(C4×Dic6)⋊23C2 = C4×D4⋊2S3 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):23C2 | 192,1095 |
(C4×Dic6)⋊24C2 = D4×Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):24C2 | 192,1096 |
(C4×Dic6)⋊25C2 = C42.102D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):25C2 | 192,1097 |
(C4×Dic6)⋊26C2 = D4⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):26C2 | 192,1098 |
(C4×Dic6)⋊27C2 = C42.105D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):27C2 | 192,1100 |
(C4×Dic6)⋊28C2 = C42.106D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):28C2 | 192,1101 |
(C4×Dic6)⋊29C2 = D4⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):29C2 | 192,1102 |
(C4×Dic6)⋊30C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):30C2 | 192,1105 |
(C4×Dic6)⋊31C2 = Dic6⋊23D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):31C2 | 192,1111 |
(C4×Dic6)⋊32C2 = Dic6⋊24D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):32C2 | 192,1112 |
(C4×Dic6)⋊33C2 = C42.229D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):33C2 | 192,1116 |
(C4×Dic6)⋊34C2 = C42.114D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):34C2 | 192,1118 |
(C4×Dic6)⋊35C2 = C42.115D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):35C2 | 192,1120 |
(C4×Dic6)⋊36C2 = C42.122D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):36C2 | 192,1127 |
(C4×Dic6)⋊37C2 = C4×S3×Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):37C2 | 192,1130 |
(C4×Dic6)⋊38C2 = C42.125D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):38C2 | 192,1131 |
(C4×Dic6)⋊39C2 = C42.232D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):39C2 | 192,1137 |
(C4×Dic6)⋊40C2 = C42.134D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):40C2 | 192,1142 |
(C4×Dic6)⋊41C2 = C42.135D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):41C2 | 192,1143 |
(C4×Dic6)⋊42C2 = C42.136D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):42C2 | 192,1144 |
(C4×Dic6)⋊43C2 = C42.137D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):43C2 | 192,1228 |
(C4×Dic6)⋊44C2 = C42.139D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):44C2 | 192,1230 |
(C4×Dic6)⋊45C2 = Dic6⋊10D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):45C2 | 192,1236 |
(C4×Dic6)⋊46C2 = C42.143D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):46C2 | 192,1240 |
(C4×Dic6)⋊47C2 = D12⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):47C2 | 192,1249 |
(C4×Dic6)⋊48C2 = C42.152D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):48C2 | 192,1253 |
(C4×Dic6)⋊49C2 = C42.154D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):49C2 | 192,1255 |
(C4×Dic6)⋊50C2 = C42.166D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):50C2 | 192,1272 |
(C4×Dic6)⋊51C2 = Dic6⋊11D4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):51C2 | 192,1277 |
(C4×Dic6)⋊52C2 = D12⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):52C2 | 192,1286 |
(C4×Dic6)⋊53C2 = D12⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):53C2 | 192,1289 |
(C4×Dic6)⋊54C2 = C42.177D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 96 | | (C4xDic6):54C2 | 192,1291 |
(C4×Dic6)⋊55C2 = C4×C4○D12 | φ: trivial image | 96 | | (C4xDic6):55C2 | 192,1033 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×Dic6).1C2 = C4.8Dic12 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).1C2 | 192,15 |
(C4×Dic6).2C2 = C24⋊12Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).2C2 | 192,238 |
(C4×Dic6).3C2 = C4×Dic12 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).3C2 | 192,257 |
(C4×Dic6).4C2 = C24⋊Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).4C2 | 192,260 |
(C4×Dic6).5C2 = Dic12⋊C4 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).5C2 | 192,275 |
(C4×Dic6).6C2 = Dic6⋊2C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).6C2 | 192,43 |
(C4×Dic6).7C2 = C42.27D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).7C2 | 192,387 |
(C4×Dic6).8C2 = Dic6.3Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).8C2 | 192,388 |
(C4×Dic6).9C2 = Dic6⋊C8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).9C2 | 192,389 |
(C4×Dic6).10C2 = C42.198D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).10C2 | 192,390 |
(C4×Dic6).11C2 = C4⋊Dic12 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).11C2 | 192,408 |
(C4×Dic6).12C2 = Dic6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).12C2 | 192,409 |
(C4×Dic6).13C2 = Dic6⋊4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).13C2 | 192,410 |
(C4×Dic6).14C2 = C4×C3⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).14C2 | 192,588 |
(C4×Dic6).15C2 = C42.59D6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).15C2 | 192,589 |
(C4×Dic6).16C2 = Dic6.4Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).16C2 | 192,622 |
(C4×Dic6).17C2 = C12⋊Q16 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).17C2 | 192,649 |
(C4×Dic6).18C2 = Dic6⋊5Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).18C2 | 192,650 |
(C4×Dic6).19C2 = Dic6⋊6Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).19C2 | 192,653 |
(C4×Dic6).20C2 = Q8×Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).20C2 | 192,1125 |
(C4×Dic6).21C2 = Dic6⋊10Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).21C2 | 192,1126 |
(C4×Dic6).22C2 = Q8⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).22C2 | 192,1128 |
(C4×Dic6).23C2 = Q8⋊7Dic6 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).23C2 | 192,1129 |
(C4×Dic6).24C2 = Dic6⋊7Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).24C2 | 192,1244 |
(C4×Dic6).25C2 = Dic6⋊8Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).25C2 | 192,1280 |
(C4×Dic6).26C2 = Dic6⋊9Q8 | φ: C2/C1 → C2 ⊆ Out C4×Dic6 | 192 | | (C4xDic6).26C2 | 192,1281 |
(C4×Dic6).27C2 = C8×Dic6 | φ: trivial image | 192 | | (C4xDic6).27C2 | 192,237 |