Extensions 1→N→G→Q→1 with N=C4×Dic6 and Q=C2

Direct product G=N×Q with N=C4×Dic6 and Q=C2
dρLabelID
C2×C4×Dic6192C2xC4xDic6192,1026

Semidirect products G=N:Q with N=C4×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×Dic6)⋊1C2 = C4×C24⋊C2φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):1C2192,250
(C4×Dic6)⋊2C2 = C42.16D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):2C2192,269
(C4×Dic6)⋊3C2 = C42.274D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):3C2192,1029
(C4×Dic6)⋊4C2 = C42.277D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):4C2192,1038
(C4×Dic6)⋊5C2 = C42.87D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):5C2192,1075
(C4×Dic6)⋊6C2 = C42.88D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):6C2192,1076
(C4×Dic6)⋊7C2 = C42.89D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):7C2192,1077
(C4×Dic6)⋊8C2 = C42.91D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):8C2192,1082
(C4×Dic6)⋊9C2 = C42.93D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):9C2192,1087
(C4×Dic6)⋊10C2 = C42.96D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):10C2192,1090
(C4×Dic6)⋊11C2 = C42.98D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):11C2192,1092
(C4×Dic6)⋊12C2 = C42.99D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):12C2192,1093
(C4×Dic6)⋊13C2 = C42.159D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):13C2192,1260
(C4×Dic6)⋊14C2 = C42.160D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):14C2192,1261
(C4×Dic6)⋊15C2 = C42.162D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):15C2192,1267
(C4×Dic6)⋊16C2 = C42.164D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):16C2192,1269
(C4×Dic6)⋊17C2 = C42.36D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):17C2192,404
(C4×Dic6)⋊18C2 = Dic68D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):18C2192,407
(C4×Dic6)⋊19C2 = C4×D4.S3φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):19C2192,576
(C4×Dic6)⋊20C2 = C42.51D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):20C2192,577
(C4×Dic6)⋊21C2 = C42.61D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):21C2192,613
(C4×Dic6)⋊22C2 = Dic69D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):22C2192,634
(C4×Dic6)⋊23C2 = C4×D42S3φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):23C2192,1095
(C4×Dic6)⋊24C2 = D4×Dic6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):24C2192,1096
(C4×Dic6)⋊25C2 = C42.102D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):25C2192,1097
(C4×Dic6)⋊26C2 = D45Dic6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):26C2192,1098
(C4×Dic6)⋊27C2 = C42.105D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):27C2192,1100
(C4×Dic6)⋊28C2 = C42.106D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):28C2192,1101
(C4×Dic6)⋊29C2 = D46Dic6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):29C2192,1102
(C4×Dic6)⋊30C2 = C42.108D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):30C2192,1105
(C4×Dic6)⋊31C2 = Dic623D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):31C2192,1111
(C4×Dic6)⋊32C2 = Dic624D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):32C2192,1112
(C4×Dic6)⋊33C2 = C42.229D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):33C2192,1116
(C4×Dic6)⋊34C2 = C42.114D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):34C2192,1118
(C4×Dic6)⋊35C2 = C42.115D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):35C2192,1120
(C4×Dic6)⋊36C2 = C42.122D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):36C2192,1127
(C4×Dic6)⋊37C2 = C4×S3×Q8φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):37C2192,1130
(C4×Dic6)⋊38C2 = C42.125D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):38C2192,1131
(C4×Dic6)⋊39C2 = C42.232D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):39C2192,1137
(C4×Dic6)⋊40C2 = C42.134D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):40C2192,1142
(C4×Dic6)⋊41C2 = C42.135D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):41C2192,1143
(C4×Dic6)⋊42C2 = C42.136D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):42C2192,1144
(C4×Dic6)⋊43C2 = C42.137D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):43C2192,1228
(C4×Dic6)⋊44C2 = C42.139D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):44C2192,1230
(C4×Dic6)⋊45C2 = Dic610D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):45C2192,1236
(C4×Dic6)⋊46C2 = C42.143D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):46C2192,1240
(C4×Dic6)⋊47C2 = D127Q8φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):47C2192,1249
(C4×Dic6)⋊48C2 = C42.152D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):48C2192,1253
(C4×Dic6)⋊49C2 = C42.154D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):49C2192,1255
(C4×Dic6)⋊50C2 = C42.166D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):50C2192,1272
(C4×Dic6)⋊51C2 = Dic611D4φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):51C2192,1277
(C4×Dic6)⋊52C2 = D128Q8φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):52C2192,1286
(C4×Dic6)⋊53C2 = D129Q8φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):53C2192,1289
(C4×Dic6)⋊54C2 = C42.177D6φ: C2/C1C2 ⊆ Out C4×Dic696(C4xDic6):54C2192,1291
(C4×Dic6)⋊55C2 = C4×C4○D12φ: trivial image96(C4xDic6):55C2192,1033

Non-split extensions G=N.Q with N=C4×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×Dic6).1C2 = C4.8Dic12φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).1C2192,15
(C4×Dic6).2C2 = C2412Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).2C2192,238
(C4×Dic6).3C2 = C4×Dic12φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).3C2192,257
(C4×Dic6).4C2 = C24⋊Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).4C2192,260
(C4×Dic6).5C2 = Dic12⋊C4φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).5C2192,275
(C4×Dic6).6C2 = Dic62C8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).6C2192,43
(C4×Dic6).7C2 = C42.27D6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).7C2192,387
(C4×Dic6).8C2 = Dic6.3Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).8C2192,388
(C4×Dic6).9C2 = Dic6⋊C8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).9C2192,389
(C4×Dic6).10C2 = C42.198D6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).10C2192,390
(C4×Dic6).11C2 = C4⋊Dic12φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).11C2192,408
(C4×Dic6).12C2 = Dic63Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).12C2192,409
(C4×Dic6).13C2 = Dic64Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).13C2192,410
(C4×Dic6).14C2 = C4×C3⋊Q16φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).14C2192,588
(C4×Dic6).15C2 = C42.59D6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).15C2192,589
(C4×Dic6).16C2 = Dic6.4Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).16C2192,622
(C4×Dic6).17C2 = C12⋊Q16φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).17C2192,649
(C4×Dic6).18C2 = Dic65Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).18C2192,650
(C4×Dic6).19C2 = Dic66Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).19C2192,653
(C4×Dic6).20C2 = Q8×Dic6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).20C2192,1125
(C4×Dic6).21C2 = Dic610Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).21C2192,1126
(C4×Dic6).22C2 = Q86Dic6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).22C2192,1128
(C4×Dic6).23C2 = Q87Dic6φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).23C2192,1129
(C4×Dic6).24C2 = Dic67Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).24C2192,1244
(C4×Dic6).25C2 = Dic68Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).25C2192,1280
(C4×Dic6).26C2 = Dic69Q8φ: C2/C1C2 ⊆ Out C4×Dic6192(C4xDic6).26C2192,1281
(C4×Dic6).27C2 = C8×Dic6φ: trivial image192(C4xDic6).27C2192,237

׿
×
𝔽