Copied to
clipboard

G = D4xDic6order 192 = 26·3

Direct product of D4 and Dic6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4xDic6, C42.101D6, C6.552- 1+4, C3:1(D4xQ8), (C3xD4):5Q8, C12:1(C2xQ8), C12:Q8:14C2, C4:1(C2xDic6), C4:C4.276D6, (C4xD4).10S3, C4.138(S3xD4), C12:2Q8:21C2, (C4xDic6):24C2, (D4xC12).11C2, (C2xD4).241D6, C12.344(C2xD4), (C2xC6).81C24, C22:2(C2xDic6), C6.45(C22xD4), C12.48D4:6C2, C6.12(C22xQ8), C22:C4.104D6, C2.13(Q8oD12), (D4xDic3).10C2, Dic3.16(C2xD4), (C22xDic6):8C2, (C22xC4).217D6, (C2xC12).153C23, (C4xC12).144C22, Dic3.D4:6C2, (C6xD4).248C22, Dic3:C4.5C22, C2.14(C22xDic6), C4:Dic3.197C22, C23.172(C22xS3), (C22xC12).76C22, C22.109(S3xC23), (C22xC6).151C23, (C4xDic3).71C22, C6.D4.7C22, (C2xDic3).199C23, (C2xDic6).234C22, (C22xDic3).90C22, (C2xC6):1(C2xQ8), C2.18(C2xS3xD4), (C3xC4:C4).317C22, (C2xC4).152(C22xS3), (C3xC22:C4).103C22, SmallGroup(192,1096)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D4xDic6
C1C3C6C2xC6C2xDic3C22xDic3D4xDic3 — D4xDic6
C3C2xC6 — D4xDic6
C1C22C4xD4

Generators and relations for D4xDic6
 G = < a,b,c,d | a4=b2=c12=1, d2=c6, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 632 in 280 conjugacy classes, 123 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, Dic6, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C2xC12, C3xD4, C22xC6, C4xD4, C4xD4, C4xQ8, C22:Q8, C4:Q8, C22xQ8, C4xDic3, Dic3:C4, C4:Dic3, C4:Dic3, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, C2xDic6, C2xDic6, C22xDic3, C22xC12, C6xD4, D4xQ8, C4xDic6, C12:2Q8, Dic3.D4, C12:Q8, C12.48D4, D4xDic3, D4xC12, C22xDic6, D4xDic6
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2xD4, C2xQ8, C24, Dic6, C22xS3, C22xD4, C22xQ8, 2- 1+4, C2xDic6, S3xD4, S3xC23, D4xQ8, C22xDic6, C2xS3xD4, Q8oD12, D4xDic6

Smallest permutation representation of D4xDic6
On 96 points
Generators in S96
(1 65 89 28)(2 66 90 29)(3 67 91 30)(4 68 92 31)(5 69 93 32)(6 70 94 33)(7 71 95 34)(8 72 96 35)(9 61 85 36)(10 62 86 25)(11 63 87 26)(12 64 88 27)(13 60 77 37)(14 49 78 38)(15 50 79 39)(16 51 80 40)(17 52 81 41)(18 53 82 42)(19 54 83 43)(20 55 84 44)(21 56 73 45)(22 57 74 46)(23 58 75 47)(24 59 76 48)
(1 34)(2 35)(3 36)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(49 84)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 81)(59 82)(60 83)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 22 7 16)(2 21 8 15)(3 20 9 14)(4 19 10 13)(5 18 11 24)(6 17 12 23)(25 37 31 43)(26 48 32 42)(27 47 33 41)(28 46 34 40)(29 45 35 39)(30 44 36 38)(49 67 55 61)(50 66 56 72)(51 65 57 71)(52 64 58 70)(53 63 59 69)(54 62 60 68)(73 96 79 90)(74 95 80 89)(75 94 81 88)(76 93 82 87)(77 92 83 86)(78 91 84 85)

G:=sub<Sym(96)| (1,65,89,28)(2,66,90,29)(3,67,91,30)(4,68,92,31)(5,69,93,32)(6,70,94,33)(7,71,95,34)(8,72,96,35)(9,61,85,36)(10,62,86,25)(11,63,87,26)(12,64,88,27)(13,60,77,37)(14,49,78,38)(15,50,79,39)(16,51,80,40)(17,52,81,41)(18,53,82,42)(19,54,83,43)(20,55,84,44)(21,56,73,45)(22,57,74,46)(23,58,75,47)(24,59,76,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(49,84)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,7,16)(2,21,8,15)(3,20,9,14)(4,19,10,13)(5,18,11,24)(6,17,12,23)(25,37,31,43)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38)(49,67,55,61)(50,66,56,72)(51,65,57,71)(52,64,58,70)(53,63,59,69)(54,62,60,68)(73,96,79,90)(74,95,80,89)(75,94,81,88)(76,93,82,87)(77,92,83,86)(78,91,84,85)>;

G:=Group( (1,65,89,28)(2,66,90,29)(3,67,91,30)(4,68,92,31)(5,69,93,32)(6,70,94,33)(7,71,95,34)(8,72,96,35)(9,61,85,36)(10,62,86,25)(11,63,87,26)(12,64,88,27)(13,60,77,37)(14,49,78,38)(15,50,79,39)(16,51,80,40)(17,52,81,41)(18,53,82,42)(19,54,83,43)(20,55,84,44)(21,56,73,45)(22,57,74,46)(23,58,75,47)(24,59,76,48), (1,34)(2,35)(3,36)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(49,84)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,22,7,16)(2,21,8,15)(3,20,9,14)(4,19,10,13)(5,18,11,24)(6,17,12,23)(25,37,31,43)(26,48,32,42)(27,47,33,41)(28,46,34,40)(29,45,35,39)(30,44,36,38)(49,67,55,61)(50,66,56,72)(51,65,57,71)(52,64,58,70)(53,63,59,69)(54,62,60,68)(73,96,79,90)(74,95,80,89)(75,94,81,88)(76,93,82,87)(77,92,83,86)(78,91,84,85) );

G=PermutationGroup([[(1,65,89,28),(2,66,90,29),(3,67,91,30),(4,68,92,31),(5,69,93,32),(6,70,94,33),(7,71,95,34),(8,72,96,35),(9,61,85,36),(10,62,86,25),(11,63,87,26),(12,64,88,27),(13,60,77,37),(14,49,78,38),(15,50,79,39),(16,51,80,40),(17,52,81,41),(18,53,82,42),(19,54,83,43),(20,55,84,44),(21,56,73,45),(22,57,74,46),(23,58,75,47),(24,59,76,48)], [(1,34),(2,35),(3,36),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(49,84),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,81),(59,82),(60,83),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,22,7,16),(2,21,8,15),(3,20,9,14),(4,19,10,13),(5,18,11,24),(6,17,12,23),(25,37,31,43),(26,48,32,42),(27,47,33,41),(28,46,34,40),(29,45,35,39),(30,44,36,38),(49,67,55,61),(50,66,56,72),(51,65,57,71),(52,64,58,70),(53,63,59,69),(54,62,60,68),(73,96,79,90),(74,95,80,89),(75,94,81,88),(76,93,82,87),(77,92,83,86),(78,91,84,85)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L···4Q6A6B6C6D6E6F6G12A12B12C12D12E···12L
order122222223444444444444···466666661212121212···12
size1111222222222444666612···12222444422224···4

45 irreducible representations

dim111111111222222222444
type+++++++++++-+++++--+-
imageC1C2C2C2C2C2C2C2C2S3D4Q8D6D6D6D6D6Dic62- 1+4S3xD4Q8oD12
kernelD4xDic6C4xDic6C12:2Q8Dic3.D4C12:Q8C12.48D4D4xDic3D4xC12C22xDic6C4xD4Dic6C3xD4C42C22:C4C4:C4C22xC4C2xD4D4C6C4C2
# reps111422212144121218122

Matrix representation of D4xDic6 in GL6(F13)

130000
8120000
0012000
0001200
0000120
0000012
,
130000
0120000
001000
000100
0000120
0000012
,
100000
010000
00121100
001100
0000112
000010
,
100000
010000
0012600
004100
0000610
000037

G:=sub<GL(6,GF(13))| [1,8,0,0,0,0,3,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,3,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,11,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,4,0,0,0,0,6,1,0,0,0,0,0,0,6,3,0,0,0,0,10,7] >;

D4xDic6 in GAP, Magma, Sage, TeX

D_4\times {\rm Dic}_6
% in TeX

G:=Group("D4xDic6");
// GroupNames label

G:=SmallGroup(192,1096);
// by ID

G=gap.SmallGroup(192,1096);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,387,675,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=1,d^2=c^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<