Copied to
clipboard

G = D12:7Q8order 192 = 26·3

5th semidirect product of D12 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:7Q8, C42.149D6, C6.1312+ 1+4, C12:Q8:36C2, C4.16(S3xQ8), C4:C4.205D6, C3:7(D4:3Q8), D6.11(C2xQ8), C12.51(C2xQ8), C42.C2:5S3, C4.D12:35C2, D6:Q8:34C2, (C4xDic6):47C2, (C4xD12).24C2, C2.56(D4oD12), C6.43(C22xQ8), (C2xC6).234C24, (C2xC12).88C23, D6:C4.40C22, C4.Dic6:34C2, Dic3:5D4.11C2, (C4xC12).194C22, Dic3.29(C4oD4), (C2xD12).267C22, C4:Dic3.379C22, C22.255(S3xC23), Dic3:C4.144C22, (C22xS3).221C23, (C2xDic3).122C23, (C4xDic3).141C22, (C2xDic6).251C22, (S3xC4:C4):35C2, C2.26(C2xS3xQ8), C2.85(S3xC4oD4), C6.196(C2xC4oD4), (C3xC42.C2):7C2, (S3xC2xC4).217C22, (C2xC4).78(C22xS3), (C3xC4:C4).189C22, SmallGroup(192,1249)

Series: Derived Chief Lower central Upper central

C1C2xC6 — D12:7Q8
C1C3C6C2xC6C22xS3S3xC2xC4S3xC4:C4 — D12:7Q8
C3C2xC6 — D12:7Q8
C1C22C42.C2

Generators and relations for D12:7Q8
 G = < a,b,c,d | a12=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a5, cbc-1=a6b, dbd-1=a10b, dcd-1=c-1 >

Subgroups: 560 in 228 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C4:C4, C22xC4, C2xD4, C2xQ8, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C22xS3, C2xC4:C4, C4xD4, C4xQ8, C22:Q8, C42.C2, C42.C2, C4:Q8, C4xDic3, Dic3:C4, Dic3:C4, C4:Dic3, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, C3xC4:C4, C2xDic6, C2xDic6, S3xC2xC4, C2xD12, D4:3Q8, C4xDic6, C4xD12, C12:Q8, C4.Dic6, S3xC4:C4, Dic3:5D4, D6:Q8, C4.D12, C3xC42.C2, D12:7Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2xQ8, C4oD4, C24, C22xS3, C22xQ8, C2xC4oD4, 2+ 1+4, S3xQ8, S3xC23, D4:3Q8, C2xS3xQ8, S3xC4oD4, D4oD12, D12:7Q8

Smallest permutation representation of D12:7Q8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 54)(2 53)(3 52)(4 51)(5 50)(6 49)(7 60)(8 59)(9 58)(10 57)(11 56)(12 55)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 25)(24 36)(37 84)(38 83)(39 82)(40 81)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 96)(69 95)(70 94)(71 93)(72 92)
(1 72 58 90)(2 61 59 91)(3 62 60 92)(4 63 49 93)(5 64 50 94)(6 65 51 95)(7 66 52 96)(8 67 53 85)(9 68 54 86)(10 69 55 87)(11 70 56 88)(12 71 57 89)(13 43 25 74)(14 44 26 75)(15 45 27 76)(16 46 28 77)(17 47 29 78)(18 48 30 79)(19 37 31 80)(20 38 32 81)(21 39 33 82)(22 40 34 83)(23 41 35 84)(24 42 36 73)
(1 81 58 38)(2 74 59 43)(3 79 60 48)(4 84 49 41)(5 77 50 46)(6 82 51 39)(7 75 52 44)(8 80 53 37)(9 73 54 42)(10 78 55 47)(11 83 56 40)(12 76 57 45)(13 61 25 91)(14 66 26 96)(15 71 27 89)(16 64 28 94)(17 69 29 87)(18 62 30 92)(19 67 31 85)(20 72 32 90)(21 65 33 95)(22 70 34 88)(23 63 35 93)(24 68 36 86)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,36)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,96)(69,95)(70,94)(71,93)(72,92), (1,72,58,90)(2,61,59,91)(3,62,60,92)(4,63,49,93)(5,64,50,94)(6,65,51,95)(7,66,52,96)(8,67,53,85)(9,68,54,86)(10,69,55,87)(11,70,56,88)(12,71,57,89)(13,43,25,74)(14,44,26,75)(15,45,27,76)(16,46,28,77)(17,47,29,78)(18,48,30,79)(19,37,31,80)(20,38,32,81)(21,39,33,82)(22,40,34,83)(23,41,35,84)(24,42,36,73), (1,81,58,38)(2,74,59,43)(3,79,60,48)(4,84,49,41)(5,77,50,46)(6,82,51,39)(7,75,52,44)(8,80,53,37)(9,73,54,42)(10,78,55,47)(11,83,56,40)(12,76,57,45)(13,61,25,91)(14,66,26,96)(15,71,27,89)(16,64,28,94)(17,69,29,87)(18,62,30,92)(19,67,31,85)(20,72,32,90)(21,65,33,95)(22,70,34,88)(23,63,35,93)(24,68,36,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,25)(24,36)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,96)(69,95)(70,94)(71,93)(72,92), (1,72,58,90)(2,61,59,91)(3,62,60,92)(4,63,49,93)(5,64,50,94)(6,65,51,95)(7,66,52,96)(8,67,53,85)(9,68,54,86)(10,69,55,87)(11,70,56,88)(12,71,57,89)(13,43,25,74)(14,44,26,75)(15,45,27,76)(16,46,28,77)(17,47,29,78)(18,48,30,79)(19,37,31,80)(20,38,32,81)(21,39,33,82)(22,40,34,83)(23,41,35,84)(24,42,36,73), (1,81,58,38)(2,74,59,43)(3,79,60,48)(4,84,49,41)(5,77,50,46)(6,82,51,39)(7,75,52,44)(8,80,53,37)(9,73,54,42)(10,78,55,47)(11,83,56,40)(12,76,57,45)(13,61,25,91)(14,66,26,96)(15,71,27,89)(16,64,28,94)(17,69,29,87)(18,62,30,92)(19,67,31,85)(20,72,32,90)(21,65,33,95)(22,70,34,88)(23,63,35,93)(24,68,36,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,54),(2,53),(3,52),(4,51),(5,50),(6,49),(7,60),(8,59),(9,58),(10,57),(11,56),(12,55),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,25),(24,36),(37,84),(38,83),(39,82),(40,81),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,96),(69,95),(70,94),(71,93),(72,92)], [(1,72,58,90),(2,61,59,91),(3,62,60,92),(4,63,49,93),(5,64,50,94),(6,65,51,95),(7,66,52,96),(8,67,53,85),(9,68,54,86),(10,69,55,87),(11,70,56,88),(12,71,57,89),(13,43,25,74),(14,44,26,75),(15,45,27,76),(16,46,28,77),(17,47,29,78),(18,48,30,79),(19,37,31,80),(20,38,32,81),(21,39,33,82),(22,40,34,83),(23,41,35,84),(24,42,36,73)], [(1,81,58,38),(2,74,59,43),(3,79,60,48),(4,84,49,41),(5,77,50,46),(6,82,51,39),(7,75,52,44),(8,80,53,37),(9,73,54,42),(10,78,55,47),(11,83,56,40),(12,76,57,45),(13,61,25,91),(14,66,26,96),(15,71,27,89),(16,64,28,94),(17,69,29,87),(18,62,30,92),(19,67,31,85),(20,72,32,90),(21,65,33,95),(22,70,34,88),(23,63,35,93),(24,68,36,86)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q6A6B6C12A···12F12G12H12I12J
order12222222344444···44444444466612···1212121212
size11116666222224···46666121212122224···48888

39 irreducible representations

dim1111111111222224444
type+++++++++++-+++-+
imageC1C2C2C2C2C2C2C2C2C2S3Q8D6D6C4oD42+ 1+4S3xQ8S3xC4oD4D4oD12
kernelD12:7Q8C4xDic6C4xD12C12:Q8C4.Dic6S3xC4:C4Dic3:5D4D6:Q8C4.D12C3xC42.C2C42.C2D12C42C4:C4Dic3C6C4C2C2
# reps1111122421141641222

Matrix representation of D12:7Q8 in GL6(F13)

12120000
100000
0012000
0001200
000008
000080
,
12120000
010000
0012000
0001200
000010
0000012
,
100000
010000
000100
0012000
000001
000010
,
1200000
110000
0041000
0010900
0000012
0000120

G:=sub<GL(6,GF(13))| [12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,8,0,0,0,0,8,0],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,4,10,0,0,0,0,10,9,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;

D12:7Q8 in GAP, Magma, Sage, TeX

D_{12}\rtimes_7Q_8
% in TeX

G:=Group("D12:7Q8");
// GroupNames label

G:=SmallGroup(192,1249);
// by ID

G=gap.SmallGroup(192,1249);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,219,184,1571,297,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^5,c*b*c^-1=a^6*b,d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<