Extensions 1→N→G→Q→1 with N=C4×3- 1+2 and Q=C2

Direct product G=N×Q with N=C4×3- 1+2 and Q=C2
dρLabelID
C2×C4×3- 1+272C2xC4xES-(3,1)216,75

Semidirect products G=N:Q with N=C4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×3- 1+2)⋊1C2 = D36⋊C3φ: C2/C1C2 ⊆ Out C4×3- 1+2366+(C4xES-(3,1)):1C2216,54
(C4×3- 1+2)⋊2C2 = C4×C9⋊C6φ: C2/C1C2 ⊆ Out C4×3- 1+2366(C4xES-(3,1)):2C2216,53
(C4×3- 1+2)⋊3C2 = D4×3- 1+2φ: C2/C1C2 ⊆ Out C4×3- 1+2366(C4xES-(3,1)):3C2216,78

Non-split extensions G=N.Q with N=C4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×3- 1+2).1C2 = C36.C6φ: C2/C1C2 ⊆ Out C4×3- 1+2726-(C4xES-(3,1)).1C2216,52
(C4×3- 1+2).2C2 = C9⋊C24φ: C2/C1C2 ⊆ Out C4×3- 1+2726(C4xES-(3,1)).2C2216,15
(C4×3- 1+2).3C2 = Q8×3- 1+2φ: C2/C1C2 ⊆ Out C4×3- 1+2726(C4xES-(3,1)).3C2216,81
(C4×3- 1+2).4C2 = C8×3- 1+2φ: trivial image723(C4xES-(3,1)).4C2216,20

׿
×
𝔽