direct product, metacyclic, nilpotent (class 2), monomial, 3-elementary
Aliases: C4×3- 1+2, C36⋊C3, C9⋊2C12, C18.2C6, C32.C12, C12.2C32, (C3×C12).C3, C6.3(C3×C6), (C3×C6).3C6, C3.2(C3×C12), C2.(C2×3- 1+2), C12○(C2×3- 1+2), (C2×3- 1+2).2C2, SmallGroup(108,14)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C3×C6 — C2×3- 1+2 — C4×3- 1+2 |
Generators and relations for C4×3- 1+2
G = < a,b,c | a4=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >
(1 18 20 34)(2 10 21 35)(3 11 22 36)(4 12 23 28)(5 13 24 29)(6 14 25 30)(7 15 26 31)(8 16 27 32)(9 17 19 33)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 22 25)(21 27 24)(29 35 32)(30 33 36)
G:=sub<Sym(36)| (1,18,20,34)(2,10,21,35)(3,11,22,36)(4,12,23,28)(5,13,24,29)(6,14,25,30)(7,15,26,31)(8,16,27,32)(9,17,19,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(29,35,32)(30,33,36)>;
G:=Group( (1,18,20,34)(2,10,21,35)(3,11,22,36)(4,12,23,28)(5,13,24,29)(6,14,25,30)(7,15,26,31)(8,16,27,32)(9,17,19,33), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,22,25)(21,27,24)(29,35,32)(30,33,36) );
G=PermutationGroup([[(1,18,20,34),(2,10,21,35),(3,11,22,36),(4,12,23,28),(5,13,24,29),(6,14,25,30),(7,15,26,31),(8,16,27,32),(9,17,19,33)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,22,25),(21,27,24),(29,35,32),(30,33,36)]])
C4×3- 1+2 is a maximal subgroup of
C9⋊C24 C36.C6 D36⋊C3 C36.A4 Q8⋊C9⋊4C6
44 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | ··· | 18F | 36A | ··· | 36L |
order | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | ··· | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 3 | ··· | 3 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C3 | C4 | C6 | C6 | C12 | C12 | 3- 1+2 | C2×3- 1+2 | C4×3- 1+2 |
kernel | C4×3- 1+2 | C2×3- 1+2 | C36 | C3×C12 | 3- 1+2 | C18 | C3×C6 | C9 | C32 | C4 | C2 | C1 |
# reps | 1 | 1 | 6 | 2 | 2 | 6 | 2 | 12 | 4 | 2 | 2 | 4 |
Matrix representation of C4×3- 1+2 ►in GL3(𝔽13) generated by
8 | 0 | 0 |
0 | 8 | 0 |
0 | 0 | 8 |
0 | 0 | 8 |
3 | 0 | 0 |
0 | 2 | 0 |
3 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 1 |
G:=sub<GL(3,GF(13))| [8,0,0,0,8,0,0,0,8],[0,3,0,0,0,2,8,0,0],[3,0,0,0,9,0,0,0,1] >;
C4×3- 1+2 in GAP, Magma, Sage, TeX
C_4\times 3_-^{1+2}
% in TeX
G:=Group("C4xES-(3,1)");
// GroupNames label
G:=SmallGroup(108,14);
// by ID
G=gap.SmallGroup(108,14);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,-3,90,186,322]);
// Polycyclic
G:=Group<a,b,c|a^4=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export