Copied to
clipboard

G = C4×C9⋊C6order 216 = 23·33

Direct product of C4 and C9⋊C6

direct product, metacyclic, supersoluble, monomial

Aliases: C4×C9⋊C6, D9⋊C12, C362C6, D18.C6, Dic92C6, (C4×D9)⋊C3, C9⋊C122C2, C91(C2×C12), C32.(C4×S3), C3.3(S3×C12), C6.13(S3×C6), (C3×C12).8S3, C18.2(C2×C6), (C3×C6).10D6, C12.13(C3×S3), 3- 1+21(C2×C4), (C4×3- 1+2)⋊2C2, (C2×3- 1+2).2C22, (C2×C9⋊C6).C2, C2.1(C2×C9⋊C6), SmallGroup(216,53)

Series: Derived Chief Lower central Upper central

C1C9 — C4×C9⋊C6
C1C3C9C18C2×3- 1+2C2×C9⋊C6 — C4×C9⋊C6
C9 — C4×C9⋊C6
C1C4

Generators and relations for C4×C9⋊C6
 G = < a,b,c | a4=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >

9C2
9C2
3C3
9C4
9C22
3S3
3C6
3S3
9C6
9C6
2C9
9C2×C4
3D6
3C12
3Dic3
9C2×C6
9C12
2C18
3C3×S3
3C3×S3
3C4×S3
9C2×C12
2C36
3S3×C6
3C3×Dic3
3S3×C12

Smallest permutation representation of C4×C9⋊C6
On 36 points
Generators in S36
(1 29 11 20)(2 30 12 21)(3 31 13 22)(4 32 14 23)(5 33 15 24)(6 34 16 25)(7 35 17 26)(8 36 18 27)(9 28 10 19)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 11)(2 16 8 10 5 13)(3 12 6 18 9 15)(4 17)(7 14)(19 33 22 30 25 36)(20 29)(21 34 27 28 24 31)(23 35)(26 32)

G:=sub<Sym(36)| (1,29,11,20)(2,30,12,21)(3,31,13,22)(4,32,14,23)(5,33,15,24)(6,34,16,25)(7,35,17,26)(8,36,18,27)(9,28,10,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,11)(2,16,8,10,5,13)(3,12,6,18,9,15)(4,17)(7,14)(19,33,22,30,25,36)(20,29)(21,34,27,28,24,31)(23,35)(26,32)>;

G:=Group( (1,29,11,20)(2,30,12,21)(3,31,13,22)(4,32,14,23)(5,33,15,24)(6,34,16,25)(7,35,17,26)(8,36,18,27)(9,28,10,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,11)(2,16,8,10,5,13)(3,12,6,18,9,15)(4,17)(7,14)(19,33,22,30,25,36)(20,29)(21,34,27,28,24,31)(23,35)(26,32) );

G=PermutationGroup([[(1,29,11,20),(2,30,12,21),(3,31,13,22),(4,32,14,23),(5,33,15,24),(6,34,16,25),(7,35,17,26),(8,36,18,27),(9,28,10,19)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,11),(2,16,8,10,5,13),(3,12,6,18,9,15),(4,17),(7,14),(19,33,22,30,25,36),(20,29),(21,34,27,28,24,31),(23,35),(26,32)]])

C4×C9⋊C6 is a maximal subgroup of   C72⋊C6  D366C6  Dic182C6  D363C6
C4×C9⋊C6 is a maximal quotient of   C72⋊C6  Dic9⋊C12  D18⋊C12

40 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C6D6E6F6G9A9B9C12A12B12C12D12E12F12G12H12I12J18A18B18C36A···36F
order1222333444466666669991212121212121212121218181836···36
size11992331199233999966622333399996666···6

40 irreducible representations

dim1111111111222222666
type++++++++
imageC1C2C2C2C3C4C6C6C6C12S3D6C3×S3C4×S3S3×C6S3×C12C9⋊C6C2×C9⋊C6C4×C9⋊C6
kernelC4×C9⋊C6C9⋊C12C4×3- 1+2C2×C9⋊C6C4×D9C9⋊C6Dic9C36D18D9C3×C12C3×C6C12C32C6C3C4C2C1
# reps1111242228112224112

Matrix representation of C4×C9⋊C6 in GL6(𝔽37)

3100000
0310000
0031000
0003100
0000310
0000031
,
0036100
0036000
363636363635
0000136
001001
101001
,
0360000
3600000
111121
0000136
00036360
00360360

G:=sub<GL(6,GF(37))| [31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31,0,0,0,0,0,0,31],[0,0,36,0,0,1,0,0,36,0,0,0,36,36,36,0,1,1,1,0,36,0,0,0,0,0,36,1,0,0,0,0,35,36,1,1],[0,36,1,0,0,0,36,0,1,0,0,0,0,0,1,0,0,36,0,0,1,0,36,0,0,0,2,1,36,36,0,0,1,36,0,0] >;

C4×C9⋊C6 in GAP, Magma, Sage, TeX

C_4\times C_9\rtimes C_6
% in TeX

G:=Group("C4xC9:C6");
// GroupNames label

G:=SmallGroup(216,53);
// by ID

G=gap.SmallGroup(216,53);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,79,3604,736,208,5189]);
// Polycyclic

G:=Group<a,b,c|a^4=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C4×C9⋊C6 in TeX

׿
×
𝔽