Copied to
clipboard

G = C9⋊C24order 216 = 23·33

The semidirect product of C9 and C24 acting via C24/C4=C6

metacyclic, supersoluble, monomial

Aliases: C9⋊C24, C18.C12, C36.2C6, 3- 1+2⋊C8, C9⋊C8⋊C3, C2.(C9⋊C12), C32.(C3⋊C8), C4.2(C9⋊C6), (C3×C12).6S3, C12.10(C3×S3), C6.3(C3×Dic3), (C3×C6).2Dic3, (C2×3- 1+2).C4, (C4×3- 1+2).2C2, C3.3(C3×C3⋊C8), SmallGroup(216,15)

Series: Derived Chief Lower central Upper central

C1C9 — C9⋊C24
C1C3C9C18C36C4×3- 1+2 — C9⋊C24
C9 — C9⋊C24
C1C4

Generators and relations for C9⋊C24
 G = < a,b | a9=b24=1, bab-1=a2 >

3C3
3C6
2C9
9C8
3C12
2C18
3C3⋊C8
9C24
2C36
3C3×C3⋊C8

Smallest permutation representation of C9⋊C24
On 72 points
Generators in S72
(1 42 62 19 34 70 12 26 54)(2 63 35 13 55 43 20 71 27)(3 36 56 21 28 64 14 44 72)(4 57 29 15 49 37 22 65 45)(5 30 50 23 46 58 16 38 66)(6 51 47 9 67 31 24 59 39)(7 48 68 17 40 52 10 32 60)(8 69 41 11 61 25 18 53 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,42,62,19,34,70,12,26,54)(2,63,35,13,55,43,20,71,27)(3,36,56,21,28,64,14,44,72)(4,57,29,15,49,37,22,65,45)(5,30,50,23,46,58,16,38,66)(6,51,47,9,67,31,24,59,39)(7,48,68,17,40,52,10,32,60)(8,69,41,11,61,25,18,53,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)>;

G:=Group( (1,42,62,19,34,70,12,26,54)(2,63,35,13,55,43,20,71,27)(3,36,56,21,28,64,14,44,72)(4,57,29,15,49,37,22,65,45)(5,30,50,23,46,58,16,38,66)(6,51,47,9,67,31,24,59,39)(7,48,68,17,40,52,10,32,60)(8,69,41,11,61,25,18,53,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,42,62,19,34,70,12,26,54),(2,63,35,13,55,43,20,71,27),(3,36,56,21,28,64,14,44,72),(4,57,29,15,49,37,22,65,45),(5,30,50,23,46,58,16,38,66),(6,51,47,9,67,31,24,59,39),(7,48,68,17,40,52,10,32,60),(8,69,41,11,61,25,18,53,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)]])

C9⋊C24 is a maximal subgroup of   C8×C9⋊C6  C72⋊C6  C36.C12  Dic18⋊C6  D36⋊C6  Dic18.C6  D36.C6
C9⋊C24 is a maximal quotient of   C9⋊C48

40 conjugacy classes

class 1  2 3A3B3C4A4B6A6B6C8A8B8C8D9A9B9C12A12B12C12D12E12F18A18B18C24A···24H36A···36F
order1233344666888899912121212121218181824···2436···36
size112331123399996662233336669···96···6

40 irreducible representations

dim11111111222222666
type+++-+-
imageC1C2C3C4C6C8C12C24S3Dic3C3×S3C3⋊C8C3×Dic3C3×C3⋊C8C9⋊C6C9⋊C12C9⋊C24
kernelC9⋊C24C4×3- 1+2C9⋊C8C2×3- 1+2C363- 1+2C18C9C3×C12C3×C6C12C32C6C3C4C2C1
# reps11222448112224112

Matrix representation of C9⋊C24 in GL8(𝔽73)

01000000
7272000000
00000100
0000727200
00000001
0000007272
00100000
00010000
,
1420000000
659000000
0054590000
005190000
0000005459
000000519
000051900
0000146800

G:=sub<GL(8,GF(73))| [0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0],[14,6,0,0,0,0,0,0,20,59,0,0,0,0,0,0,0,0,54,5,0,0,0,0,0,0,59,19,0,0,0,0,0,0,0,0,0,0,5,14,0,0,0,0,0,0,19,68,0,0,0,0,54,5,0,0,0,0,0,0,59,19,0,0] >;

C9⋊C24 in GAP, Magma, Sage, TeX

C_9\rtimes C_{24}
% in TeX

G:=Group("C9:C24");
// GroupNames label

G:=SmallGroup(216,15);
// by ID

G=gap.SmallGroup(216,15);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,-3,-3,36,50,3604,1450,208,5189]);
// Polycyclic

G:=Group<a,b|a^9=b^24=1,b*a*b^-1=a^2>;
// generators/relations

Export

Subgroup lattice of C9⋊C24 in TeX

׿
×
𝔽