extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3xDic3) = C3xC9:C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | 2 | C6.1(C3xDic3) | 216,12 |
C6.2(C3xDic3) = He3:3C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | 6 | C6.2(C3xDic3) | 216,14 |
C6.3(C3xDic3) = C9:C24 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | 6 | C6.3(C3xDic3) | 216,15 |
C6.4(C3xDic3) = C6xDic9 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.4(C3xDic3) | 216,55 |
C6.5(C3xDic3) = C2xC32:C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.5(C3xDic3) | 216,59 |
C6.6(C3xDic3) = C2xC9:C12 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.6(C3xDic3) | 216,61 |
C6.7(C3xDic3) = C3xC32:4C8 | φ: C3xDic3/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.7(C3xDic3) | 216,83 |
C6.8(C3xDic3) = C9xC3:C8 | central extension (φ=1) | 72 | 2 | C6.8(C3xDic3) | 216,13 |
C6.9(C3xDic3) = Dic3xC18 | central extension (φ=1) | 72 | | C6.9(C3xDic3) | 216,56 |
C6.10(C3xDic3) = C32xC3:C8 | central extension (φ=1) | 72 | | C6.10(C3xDic3) | 216,82 |