Extensions 1→N→G→Q→1 with N=C6 and Q=C3×Dic3

Direct product G=N×Q with N=C6 and Q=C3×Dic3

Semidirect products G=N:Q with N=C6 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C6⋊(C3×Dic3) = C6×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C672C6:(C3xDic3)216,143

Non-split extensions G=N.Q with N=C6 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C3×Dic3) = C3×C9⋊C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C6722C6.1(C3xDic3)216,12
C6.2(C3×Dic3) = He33C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C6726C6.2(C3xDic3)216,14
C6.3(C3×Dic3) = C9⋊C24φ: C3×Dic3/C3×C6C2 ⊆ Aut C6726C6.3(C3xDic3)216,15
C6.4(C3×Dic3) = C6×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C672C6.4(C3xDic3)216,55
C6.5(C3×Dic3) = C2×C32⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C672C6.5(C3xDic3)216,59
C6.6(C3×Dic3) = C2×C9⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C672C6.6(C3xDic3)216,61
C6.7(C3×Dic3) = C3×C324C8φ: C3×Dic3/C3×C6C2 ⊆ Aut C672C6.7(C3xDic3)216,83
C6.8(C3×Dic3) = C9×C3⋊C8central extension (φ=1)722C6.8(C3xDic3)216,13
C6.9(C3×Dic3) = Dic3×C18central extension (φ=1)72C6.9(C3xDic3)216,56
C6.10(C3×Dic3) = C32×C3⋊C8central extension (φ=1)72C6.10(C3xDic3)216,82