Extensions 1→N→G→Q→1 with N=C6 and Q=C3xDic3

Direct product G=NxQ with N=C6 and Q=C3xDic3
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C6 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C6:(C3xDic3) = C6xC3:Dic3φ: C3xDic3/C3xC6C2 ⊆ Aut C672C6:(C3xDic3)216,143

Non-split extensions G=N.Q with N=C6 and Q=C3xDic3
extensionφ:Q→Aut NdρLabelID
C6.1(C3xDic3) = C3xC9:C8φ: C3xDic3/C3xC6C2 ⊆ Aut C6722C6.1(C3xDic3)216,12
C6.2(C3xDic3) = He3:3C8φ: C3xDic3/C3xC6C2 ⊆ Aut C6726C6.2(C3xDic3)216,14
C6.3(C3xDic3) = C9:C24φ: C3xDic3/C3xC6C2 ⊆ Aut C6726C6.3(C3xDic3)216,15
C6.4(C3xDic3) = C6xDic9φ: C3xDic3/C3xC6C2 ⊆ Aut C672C6.4(C3xDic3)216,55
C6.5(C3xDic3) = C2xC32:C12φ: C3xDic3/C3xC6C2 ⊆ Aut C672C6.5(C3xDic3)216,59
C6.6(C3xDic3) = C2xC9:C12φ: C3xDic3/C3xC6C2 ⊆ Aut C672C6.6(C3xDic3)216,61
C6.7(C3xDic3) = C3xC32:4C8φ: C3xDic3/C3xC6C2 ⊆ Aut C672C6.7(C3xDic3)216,83
C6.8(C3xDic3) = C9xC3:C8central extension (φ=1)722C6.8(C3xDic3)216,13
C6.9(C3xDic3) = Dic3xC18central extension (φ=1)72C6.9(C3xDic3)216,56
C6.10(C3xDic3) = C32xC3:C8central extension (φ=1)72C6.10(C3xDic3)216,82

׿
x
:
Z
F
o
wr
Q
<