direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C9×C3⋊C8, C3⋊C72, C6.C36, C36.8S3, C12.2C18, C32.2C24, C18.4Dic3, (C3×C9)⋊1C8, C4.2(S3×C9), C2.(C9×Dic3), (C3×C18).1C4, (C3×C36).1C2, (C3×C6).6C12, C12.18(C3×S3), (C3×C12).13C6, C6.8(C3×Dic3), C36○(C3×C3⋊C8), (C3×C3⋊C8).C3, C3.4(C3×C3⋊C8), SmallGroup(216,13)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C9×C3⋊C8 |
Generators and relations for C9×C3⋊C8
G = < a,b,c | a9=b3=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)
(1 22 53 67 41 63 28 10)(2 23 54 68 42 55 29 11)(3 24 46 69 43 56 30 12)(4 25 47 70 44 57 31 13)(5 26 48 71 45 58 32 14)(6 27 49 72 37 59 33 15)(7 19 50 64 38 60 34 16)(8 20 51 65 39 61 35 17)(9 21 52 66 40 62 36 18)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,22,53,67,41,63,28,10)(2,23,54,68,42,55,29,11)(3,24,46,69,43,56,30,12)(4,25,47,70,44,57,31,13)(5,26,48,71,45,58,32,14)(6,27,49,72,37,59,33,15)(7,19,50,64,38,60,34,16)(8,20,51,65,39,61,35,17)(9,21,52,66,40,62,36,18)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69), (1,22,53,67,41,63,28,10)(2,23,54,68,42,55,29,11)(3,24,46,69,43,56,30,12)(4,25,47,70,44,57,31,13)(5,26,48,71,45,58,32,14)(6,27,49,72,37,59,33,15)(7,19,50,64,38,60,34,16)(8,20,51,65,39,61,35,17)(9,21,52,66,40,62,36,18) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69)], [(1,22,53,67,41,63,28,10),(2,23,54,68,42,55,29,11),(3,24,46,69,43,56,30,12),(4,25,47,70,44,57,31,13),(5,26,48,71,45,58,32,14),(6,27,49,72,37,59,33,15),(7,19,50,64,38,60,34,16),(8,20,51,65,39,61,35,17),(9,21,52,66,40,62,36,18)]])
C9×C3⋊C8 is a maximal subgroup of
C36.38D6 C36.39D6 C36.40D6 D36.S3 C6.D36 C3⋊D72 C3⋊Dic36 S3×C72
108 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 9A | ··· | 9F | 9G | ··· | 9L | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 18A | ··· | 18F | 18G | ··· | 18L | 24A | ··· | 24H | 36A | ··· | 36L | 36M | ··· | 36X | 72A | ··· | 72X |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 24 | ··· | 24 | 36 | ··· | 36 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 1 | ··· | 1 | 2 | ··· | 2 | 3 | ··· | 3 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | |||||||||||||||||
image | C1 | C2 | C3 | C4 | C6 | C8 | C9 | C12 | C18 | C24 | C36 | C72 | S3 | Dic3 | C3×S3 | C3⋊C8 | C3×Dic3 | S3×C9 | C3×C3⋊C8 | C9×Dic3 | C9×C3⋊C8 |
kernel | C9×C3⋊C8 | C3×C36 | C3×C3⋊C8 | C3×C18 | C3×C12 | C3×C9 | C3⋊C8 | C3×C6 | C12 | C32 | C6 | C3 | C36 | C18 | C12 | C9 | C6 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 6 | 4 | 6 | 8 | 12 | 24 | 1 | 1 | 2 | 2 | 2 | 6 | 4 | 6 | 12 |
Matrix representation of C9×C3⋊C8 ►in GL2(𝔽37) generated by
7 | 0 |
0 | 7 |
26 | 0 |
0 | 10 |
0 | 18 |
12 | 0 |
G:=sub<GL(2,GF(37))| [7,0,0,7],[26,0,0,10],[0,12,18,0] >;
C9×C3⋊C8 in GAP, Magma, Sage, TeX
C_9\times C_3\rtimes C_8
% in TeX
G:=Group("C9xC3:C8");
// GroupNames label
G:=SmallGroup(216,13);
// by ID
G=gap.SmallGroup(216,13);
# by ID
G:=PCGroup([6,-2,-3,-2,-3,-2,-3,36,79,122,5189]);
// Polycyclic
G:=Group<a,b,c|a^9=b^3=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export