Copied to
clipboard

G = C4×D29order 232 = 23·29

Direct product of C4 and D29

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×D29, C1162C2, C2.1D58, D58.2C2, Dic292C2, C58.2C22, C292(C2×C4), SmallGroup(232,5)

Series: Derived Chief Lower central Upper central

C1C29 — C4×D29
C1C29C58D58 — C4×D29
C29 — C4×D29
C1C4

Generators and relations for C4×D29
 G = < a,b,c | a4=b29=c2=1, ab=ba, ac=ca, cbc=b-1 >

29C2
29C2
29C22
29C4
29C2×C4

Smallest permutation representation of C4×D29
On 116 points
Generators in S116
(1 108 36 83)(2 109 37 84)(3 110 38 85)(4 111 39 86)(5 112 40 87)(6 113 41 59)(7 114 42 60)(8 115 43 61)(9 116 44 62)(10 88 45 63)(11 89 46 64)(12 90 47 65)(13 91 48 66)(14 92 49 67)(15 93 50 68)(16 94 51 69)(17 95 52 70)(18 96 53 71)(19 97 54 72)(20 98 55 73)(21 99 56 74)(22 100 57 75)(23 101 58 76)(24 102 30 77)(25 103 31 78)(26 104 32 79)(27 105 33 80)(28 106 34 81)(29 107 35 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(42 58)(43 57)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(59 77)(60 76)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(78 87)(79 86)(80 85)(81 84)(82 83)(88 98)(89 97)(90 96)(91 95)(92 94)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(116)| (1,108,36,83)(2,109,37,84)(3,110,38,85)(4,111,39,86)(5,112,40,87)(6,113,41,59)(7,114,42,60)(8,115,43,61)(9,116,44,62)(10,88,45,63)(11,89,46,64)(12,90,47,65)(13,91,48,66)(14,92,49,67)(15,93,50,68)(16,94,51,69)(17,95,52,70)(18,96,53,71)(19,97,54,72)(20,98,55,73)(21,99,56,74)(22,100,57,75)(23,101,58,76)(24,102,30,77)(25,103,31,78)(26,104,32,79)(27,105,33,80)(28,106,34,81)(29,107,35,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(78,87)(79,86)(80,85)(81,84)(82,83)(88,98)(89,97)(90,96)(91,95)(92,94)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,108,36,83)(2,109,37,84)(3,110,38,85)(4,111,39,86)(5,112,40,87)(6,113,41,59)(7,114,42,60)(8,115,43,61)(9,116,44,62)(10,88,45,63)(11,89,46,64)(12,90,47,65)(13,91,48,66)(14,92,49,67)(15,93,50,68)(16,94,51,69)(17,95,52,70)(18,96,53,71)(19,97,54,72)(20,98,55,73)(21,99,56,74)(22,100,57,75)(23,101,58,76)(24,102,30,77)(25,103,31,78)(26,104,32,79)(27,105,33,80)(28,106,34,81)(29,107,35,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(59,77)(60,76)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(78,87)(79,86)(80,85)(81,84)(82,83)(88,98)(89,97)(90,96)(91,95)(92,94)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([[(1,108,36,83),(2,109,37,84),(3,110,38,85),(4,111,39,86),(5,112,40,87),(6,113,41,59),(7,114,42,60),(8,115,43,61),(9,116,44,62),(10,88,45,63),(11,89,46,64),(12,90,47,65),(13,91,48,66),(14,92,49,67),(15,93,50,68),(16,94,51,69),(17,95,52,70),(18,96,53,71),(19,97,54,72),(20,98,55,73),(21,99,56,74),(22,100,57,75),(23,101,58,76),(24,102,30,77),(25,103,31,78),(26,104,32,79),(27,105,33,80),(28,106,34,81),(29,107,35,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(42,58),(43,57),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(59,77),(60,76),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(78,87),(79,86),(80,85),(81,84),(82,83),(88,98),(89,97),(90,96),(91,95),(92,94),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110),(106,109),(107,108)]])

C4×D29 is a maximal subgroup of   C8⋊D29  D29⋊C8  C116.C4  C116⋊C4  D1165C2  D42D29  Q82D29
C4×D29 is a maximal quotient of   C8⋊D29  C58.D4  D58⋊C4

64 conjugacy classes

class 1 2A2B2C4A4B4C4D29A···29N58A···58N116A···116AB
order1222444429···2958···58116···116
size1129291129292···22···22···2

64 irreducible representations

dim11111222
type++++++
imageC1C2C2C2C4D29D58C4×D29
kernelC4×D29Dic29C116D58D29C4C2C1
# reps11114141428

Matrix representation of C4×D29 in GL2(𝔽233) generated by

1440
0144
,
01
232179
,
01
10
G:=sub<GL(2,GF(233))| [144,0,0,144],[0,232,1,179],[0,1,1,0] >;

C4×D29 in GAP, Magma, Sage, TeX

C_4\times D_{29}
% in TeX

G:=Group("C4xD29");
// GroupNames label

G:=SmallGroup(232,5);
// by ID

G=gap.SmallGroup(232,5);
# by ID

G:=PCGroup([4,-2,-2,-2,-29,21,3587]);
// Polycyclic

G:=Group<a,b,c|a^4=b^29=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4×D29 in TeX

׿
×
𝔽