Copied to
clipboard

## G = D116order 232 = 23·29

### Dihedral group

Aliases: D116, C4⋊D29, C291D4, C1161C2, D581C2, C2.4D58, C58.3C22, sometimes denoted D232 or Dih116 or Dih232, SmallGroup(232,6)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C58 — D116
 Chief series C1 — C29 — C58 — D58 — D116
 Lower central C29 — C58 — D116
 Upper central C1 — C2 — C4

Generators and relations for D116
G = < a,b | a116=b2=1, bab=a-1 >

58C2
58C2
29C22
29C22
2D29
2D29
29D4

Smallest permutation representation of D116
On 116 points
Generators in S116
```(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 116)(2 115)(3 114)(4 113)(5 112)(6 111)(7 110)(8 109)(9 108)(10 107)(11 106)(12 105)(13 104)(14 103)(15 102)(16 101)(17 100)(18 99)(19 98)(20 97)(21 96)(22 95)(23 94)(24 93)(25 92)(26 91)(27 90)(28 89)(29 88)(30 87)(31 86)(32 85)(33 84)(34 83)(35 82)(36 81)(37 80)(38 79)(39 78)(40 77)(41 76)(42 75)(43 74)(44 73)(45 72)(46 71)(47 70)(48 69)(49 68)(50 67)(51 66)(52 65)(53 64)(54 63)(55 62)(56 61)(57 60)(58 59)```

`G:=sub<Sym(116)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,116)(2,115)(3,114)(4,113)(5,112)(6,111)(7,110)(8,109)(9,108)(10,107)(11,106)(12,105)(13,104)(14,103)(15,102)(16,101)(17,100)(18,99)(19,98)(20,97)(21,96)(22,95)(23,94)(24,93)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,84)(34,83)(35,82)(36,81)(37,80)(38,79)(39,78)(40,77)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,60)(58,59)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,116)(2,115)(3,114)(4,113)(5,112)(6,111)(7,110)(8,109)(9,108)(10,107)(11,106)(12,105)(13,104)(14,103)(15,102)(16,101)(17,100)(18,99)(19,98)(20,97)(21,96)(22,95)(23,94)(24,93)(25,92)(26,91)(27,90)(28,89)(29,88)(30,87)(31,86)(32,85)(33,84)(34,83)(35,82)(36,81)(37,80)(38,79)(39,78)(40,77)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,70)(48,69)(49,68)(50,67)(51,66)(52,65)(53,64)(54,63)(55,62)(56,61)(57,60)(58,59) );`

`G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,116),(2,115),(3,114),(4,113),(5,112),(6,111),(7,110),(8,109),(9,108),(10,107),(11,106),(12,105),(13,104),(14,103),(15,102),(16,101),(17,100),(18,99),(19,98),(20,97),(21,96),(22,95),(23,94),(24,93),(25,92),(26,91),(27,90),(28,89),(29,88),(30,87),(31,86),(32,85),(33,84),(34,83),(35,82),(36,81),(37,80),(38,79),(39,78),(40,77),(41,76),(42,75),(43,74),(44,73),(45,72),(46,71),(47,70),(48,69),(49,68),(50,67),(51,66),(52,65),(53,64),(54,63),(55,62),(56,61),(57,60),(58,59)])`

D116 is a maximal subgroup of   C232⋊C2  D232  D4⋊D29  Q8⋊D29  D1165C2  D4×D29  Q82D29
D116 is a maximal quotient of   C232⋊C2  D232  Dic116  C4⋊Dic29  D58⋊C4

61 conjugacy classes

 class 1 2A 2B 2C 4 29A ··· 29N 58A ··· 58N 116A ··· 116AB order 1 2 2 2 4 29 ··· 29 58 ··· 58 116 ··· 116 size 1 1 58 58 2 2 ··· 2 2 ··· 2 2 ··· 2

61 irreducible representations

 dim 1 1 1 2 2 2 2 type + + + + + + + image C1 C2 C2 D4 D29 D58 D116 kernel D116 C116 D58 C29 C4 C2 C1 # reps 1 1 2 1 14 14 28

Matrix representation of D116 in GL2(𝔽233) generated by

 112 3 230 183
,
 121 230 220 112
`G:=sub<GL(2,GF(233))| [112,230,3,183],[121,220,230,112] >;`

D116 in GAP, Magma, Sage, TeX

`D_{116}`
`% in TeX`

`G:=Group("D116");`
`// GroupNames label`

`G:=SmallGroup(232,6);`
`// by ID`

`G=gap.SmallGroup(232,6);`
`# by ID`

`G:=PCGroup([4,-2,-2,-2,-29,49,21,3587]);`
`// Polycyclic`

`G:=Group<a,b|a^116=b^2=1,b*a*b=a^-1>;`
`// generators/relations`

Export

׿
×
𝔽