Copied to
clipboard

G = C6×C13⋊C3order 234 = 2·32·13

Direct product of C6 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary

Aliases: C6×C13⋊C3, C78⋊C3, C26⋊C32, C394C6, C132(C3×C6), SmallGroup(234,10)

Series: Derived Chief Lower central Upper central

C1C13 — C6×C13⋊C3
C1C13C39C3×C13⋊C3 — C6×C13⋊C3
C13 — C6×C13⋊C3
C1C6

Generators and relations for C6×C13⋊C3
 G = < a,b,c | a6=b13=c3=1, ab=ba, ac=ca, cbc-1=b9 >

13C3
13C3
13C3
13C6
13C6
13C6
13C32
13C3×C6

Smallest permutation representation of C6×C13⋊C3
On 78 points
Generators in S78
(1 53 27 40 14 66)(2 54 28 41 15 67)(3 55 29 42 16 68)(4 56 30 43 17 69)(5 57 31 44 18 70)(6 58 32 45 19 71)(7 59 33 46 20 72)(8 60 34 47 21 73)(9 61 35 48 22 74)(10 62 36 49 23 75)(11 63 37 50 24 76)(12 64 38 51 25 77)(13 65 39 52 26 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 27 14)(2 30 23)(3 33 19)(4 36 15)(5 39 24)(6 29 20)(7 32 16)(8 35 25)(9 38 21)(10 28 17)(11 31 26)(12 34 22)(13 37 18)(40 66 53)(41 69 62)(42 72 58)(43 75 54)(44 78 63)(45 68 59)(46 71 55)(47 74 64)(48 77 60)(49 67 56)(50 70 65)(51 73 61)(52 76 57)

G:=sub<Sym(78)| (1,53,27,40,14,66)(2,54,28,41,15,67)(3,55,29,42,16,68)(4,56,30,43,17,69)(5,57,31,44,18,70)(6,58,32,45,19,71)(7,59,33,46,20,72)(8,60,34,47,21,73)(9,61,35,48,22,74)(10,62,36,49,23,75)(11,63,37,50,24,76)(12,64,38,51,25,77)(13,65,39,52,26,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,27,14)(2,30,23)(3,33,19)(4,36,15)(5,39,24)(6,29,20)(7,32,16)(8,35,25)(9,38,21)(10,28,17)(11,31,26)(12,34,22)(13,37,18)(40,66,53)(41,69,62)(42,72,58)(43,75,54)(44,78,63)(45,68,59)(46,71,55)(47,74,64)(48,77,60)(49,67,56)(50,70,65)(51,73,61)(52,76,57)>;

G:=Group( (1,53,27,40,14,66)(2,54,28,41,15,67)(3,55,29,42,16,68)(4,56,30,43,17,69)(5,57,31,44,18,70)(6,58,32,45,19,71)(7,59,33,46,20,72)(8,60,34,47,21,73)(9,61,35,48,22,74)(10,62,36,49,23,75)(11,63,37,50,24,76)(12,64,38,51,25,77)(13,65,39,52,26,78), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,27,14)(2,30,23)(3,33,19)(4,36,15)(5,39,24)(6,29,20)(7,32,16)(8,35,25)(9,38,21)(10,28,17)(11,31,26)(12,34,22)(13,37,18)(40,66,53)(41,69,62)(42,72,58)(43,75,54)(44,78,63)(45,68,59)(46,71,55)(47,74,64)(48,77,60)(49,67,56)(50,70,65)(51,73,61)(52,76,57) );

G=PermutationGroup([[(1,53,27,40,14,66),(2,54,28,41,15,67),(3,55,29,42,16,68),(4,56,30,43,17,69),(5,57,31,44,18,70),(6,58,32,45,19,71),(7,59,33,46,20,72),(8,60,34,47,21,73),(9,61,35,48,22,74),(10,62,36,49,23,75),(11,63,37,50,24,76),(12,64,38,51,25,77),(13,65,39,52,26,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,27,14),(2,30,23),(3,33,19),(4,36,15),(5,39,24),(6,29,20),(7,32,16),(8,35,25),(9,38,21),(10,28,17),(11,31,26),(12,34,22),(13,37,18),(40,66,53),(41,69,62),(42,72,58),(43,75,54),(44,78,63),(45,68,59),(46,71,55),(47,74,64),(48,77,60),(49,67,56),(50,70,65),(51,73,61),(52,76,57)]])

C6×C13⋊C3 is a maximal subgroup of   C393C12

42 conjugacy classes

class 1  2 3A3B3C···3H6A6B6C···6H13A13B13C13D26A26B26C26D39A···39H78A···78H
order12333···3666···6131313132626262639···3978···78
size111113···131113···13333333333···33···3

42 irreducible representations

dim1111113333
type++
imageC1C2C3C3C6C6C13⋊C3C2×C13⋊C3C3×C13⋊C3C6×C13⋊C3
kernelC6×C13⋊C3C3×C13⋊C3C2×C13⋊C3C78C13⋊C3C39C6C3C2C1
# reps1162624488

Matrix representation of C6×C13⋊C3 in GL3(𝔽79) generated by

2400
0240
0024
,
6841
44250
567438
,
15123
64849
644356
G:=sub<GL(3,GF(79))| [24,0,0,0,24,0,0,0,24],[68,4,56,4,42,74,1,50,38],[15,64,64,12,8,43,3,49,56] >;

C6×C13⋊C3 in GAP, Magma, Sage, TeX

C_6\times C_{13}\rtimes C_3
% in TeX

G:=Group("C6xC13:C3");
// GroupNames label

G:=SmallGroup(234,10);
// by ID

G=gap.SmallGroup(234,10);
# by ID

G:=PCGroup([4,-2,-3,-3,-13,439]);
// Polycyclic

G:=Group<a,b,c|a^6=b^13=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations

Export

Subgroup lattice of C6×C13⋊C3 in TeX

׿
×
𝔽