direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C29, C4⋊C58, C22⋊C58, C116⋊3C2, C58.6C22, (C2×C58)⋊1C2, C2.1(C2×C58), SmallGroup(232,10)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C29
G = < a,b,c | a29=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 64 110 32)(2 65 111 33)(3 66 112 34)(4 67 113 35)(5 68 114 36)(6 69 115 37)(7 70 116 38)(8 71 88 39)(9 72 89 40)(10 73 90 41)(11 74 91 42)(12 75 92 43)(13 76 93 44)(14 77 94 45)(15 78 95 46)(16 79 96 47)(17 80 97 48)(18 81 98 49)(19 82 99 50)(20 83 100 51)(21 84 101 52)(22 85 102 53)(23 86 103 54)(24 87 104 55)(25 59 105 56)(26 60 106 57)(27 61 107 58)(28 62 108 30)(29 63 109 31)
(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 59)(57 60)(58 61)
G:=sub<Sym(116)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,64,110,32)(2,65,111,33)(3,66,112,34)(4,67,113,35)(5,68,114,36)(6,69,115,37)(7,70,116,38)(8,71,88,39)(9,72,89,40)(10,73,90,41)(11,74,91,42)(12,75,92,43)(13,76,93,44)(14,77,94,45)(15,78,95,46)(16,79,96,47)(17,80,97,48)(18,81,98,49)(19,82,99,50)(20,83,100,51)(21,84,101,52)(22,85,102,53)(23,86,103,54)(24,87,104,55)(25,59,105,56)(26,60,106,57)(27,61,107,58)(28,62,108,30)(29,63,109,31), (30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,59)(57,60)(58,61)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,64,110,32)(2,65,111,33)(3,66,112,34)(4,67,113,35)(5,68,114,36)(6,69,115,37)(7,70,116,38)(8,71,88,39)(9,72,89,40)(10,73,90,41)(11,74,91,42)(12,75,92,43)(13,76,93,44)(14,77,94,45)(15,78,95,46)(16,79,96,47)(17,80,97,48)(18,81,98,49)(19,82,99,50)(20,83,100,51)(21,84,101,52)(22,85,102,53)(23,86,103,54)(24,87,104,55)(25,59,105,56)(26,60,106,57)(27,61,107,58)(28,62,108,30)(29,63,109,31), (30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,59)(57,60)(58,61) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,64,110,32),(2,65,111,33),(3,66,112,34),(4,67,113,35),(5,68,114,36),(6,69,115,37),(7,70,116,38),(8,71,88,39),(9,72,89,40),(10,73,90,41),(11,74,91,42),(12,75,92,43),(13,76,93,44),(14,77,94,45),(15,78,95,46),(16,79,96,47),(17,80,97,48),(18,81,98,49),(19,82,99,50),(20,83,100,51),(21,84,101,52),(22,85,102,53),(23,86,103,54),(24,87,104,55),(25,59,105,56),(26,60,106,57),(27,61,107,58),(28,62,108,30),(29,63,109,31)], [(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,59),(57,60),(58,61)]])
D4×C29 is a maximal subgroup of
D4⋊D29 D4.D29 D4⋊2D29
145 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 29A | ··· | 29AB | 58A | ··· | 58AB | 58AC | ··· | 58CF | 116A | ··· | 116AB |
order | 1 | 2 | 2 | 2 | 4 | 29 | ··· | 29 | 58 | ··· | 58 | 58 | ··· | 58 | 116 | ··· | 116 |
size | 1 | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
145 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | ||||
image | C1 | C2 | C2 | C29 | C58 | C58 | D4 | D4×C29 |
kernel | D4×C29 | C116 | C2×C58 | D4 | C4 | C22 | C29 | C1 |
# reps | 1 | 1 | 2 | 28 | 28 | 56 | 1 | 28 |
Matrix representation of D4×C29 ►in GL2(𝔽233) generated by
142 | 0 |
0 | 142 |
127 | 2 |
90 | 106 |
1 | 0 |
106 | 232 |
G:=sub<GL(2,GF(233))| [142,0,0,142],[127,90,2,106],[1,106,0,232] >;
D4×C29 in GAP, Magma, Sage, TeX
D_4\times C_{29}
% in TeX
G:=Group("D4xC29");
// GroupNames label
G:=SmallGroup(232,10);
// by ID
G=gap.SmallGroup(232,10);
# by ID
G:=PCGroup([4,-2,-2,-29,-2,945]);
// Polycyclic
G:=Group<a,b,c|a^29=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export