Copied to
clipboard

G = D4×C29order 232 = 23·29

Direct product of C29 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C29, C4⋊C58, C22⋊C58, C1163C2, C58.6C22, (C2×C58)⋊1C2, C2.1(C2×C58), SmallGroup(232,10)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C29
C1C2C58C2×C58 — D4×C29
C1C2 — D4×C29
C1C58 — D4×C29

Generators and relations for D4×C29
 G = < a,b,c | a29=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

2C2
2C2
2C58
2C58

Smallest permutation representation of D4×C29
On 116 points
Generators in S116
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)(59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87)(88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116)
(1 64 110 32)(2 65 111 33)(3 66 112 34)(4 67 113 35)(5 68 114 36)(6 69 115 37)(7 70 116 38)(8 71 88 39)(9 72 89 40)(10 73 90 41)(11 74 91 42)(12 75 92 43)(13 76 93 44)(14 77 94 45)(15 78 95 46)(16 79 96 47)(17 80 97 48)(18 81 98 49)(19 82 99 50)(20 83 100 51)(21 84 101 52)(22 85 102 53)(23 86 103 54)(24 87 104 55)(25 59 105 56)(26 60 106 57)(27 61 107 58)(28 62 108 30)(29 63 109 31)
(30 62)(31 63)(32 64)(33 65)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 72)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 59)(57 60)(58 61)

G:=sub<Sym(116)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,64,110,32)(2,65,111,33)(3,66,112,34)(4,67,113,35)(5,68,114,36)(6,69,115,37)(7,70,116,38)(8,71,88,39)(9,72,89,40)(10,73,90,41)(11,74,91,42)(12,75,92,43)(13,76,93,44)(14,77,94,45)(15,78,95,46)(16,79,96,47)(17,80,97,48)(18,81,98,49)(19,82,99,50)(20,83,100,51)(21,84,101,52)(22,85,102,53)(23,86,103,54)(24,87,104,55)(25,59,105,56)(26,60,106,57)(27,61,107,58)(28,62,108,30)(29,63,109,31), (30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,59)(57,60)(58,61)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87)(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116), (1,64,110,32)(2,65,111,33)(3,66,112,34)(4,67,113,35)(5,68,114,36)(6,69,115,37)(7,70,116,38)(8,71,88,39)(9,72,89,40)(10,73,90,41)(11,74,91,42)(12,75,92,43)(13,76,93,44)(14,77,94,45)(15,78,95,46)(16,79,96,47)(17,80,97,48)(18,81,98,49)(19,82,99,50)(20,83,100,51)(21,84,101,52)(22,85,102,53)(23,86,103,54)(24,87,104,55)(25,59,105,56)(26,60,106,57)(27,61,107,58)(28,62,108,30)(29,63,109,31), (30,62)(31,63)(32,64)(33,65)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,72)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,59)(57,60)(58,61) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58),(59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87),(88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116)], [(1,64,110,32),(2,65,111,33),(3,66,112,34),(4,67,113,35),(5,68,114,36),(6,69,115,37),(7,70,116,38),(8,71,88,39),(9,72,89,40),(10,73,90,41),(11,74,91,42),(12,75,92,43),(13,76,93,44),(14,77,94,45),(15,78,95,46),(16,79,96,47),(17,80,97,48),(18,81,98,49),(19,82,99,50),(20,83,100,51),(21,84,101,52),(22,85,102,53),(23,86,103,54),(24,87,104,55),(25,59,105,56),(26,60,106,57),(27,61,107,58),(28,62,108,30),(29,63,109,31)], [(30,62),(31,63),(32,64),(33,65),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,72),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,59),(57,60),(58,61)]])

D4×C29 is a maximal subgroup of   D4⋊D29  D4.D29  D42D29

145 conjugacy classes

class 1 2A2B2C 4 29A···29AB58A···58AB58AC···58CF116A···116AB
order1222429···2958···5858···58116···116
size112221···11···12···22···2

145 irreducible representations

dim11111122
type++++
imageC1C2C2C29C58C58D4D4×C29
kernelD4×C29C116C2×C58D4C4C22C29C1
# reps112282856128

Matrix representation of D4×C29 in GL2(𝔽233) generated by

1420
0142
,
1272
90106
,
10
106232
G:=sub<GL(2,GF(233))| [142,0,0,142],[127,90,2,106],[1,106,0,232] >;

D4×C29 in GAP, Magma, Sage, TeX

D_4\times C_{29}
% in TeX

G:=Group("D4xC29");
// GroupNames label

G:=SmallGroup(232,10);
// by ID

G=gap.SmallGroup(232,10);
# by ID

G:=PCGroup([4,-2,-2,-29,-2,945]);
// Polycyclic

G:=Group<a,b,c|a^29=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4×C29 in TeX

׿
×
𝔽