Copied to
clipboard

G = D7×C16order 224 = 25·7

Direct product of C16 and D7

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×C16, C1124C2, D14.2C8, C8.19D14, Dic7.2C8, C56.19C22, C7⋊C166C2, C71(C2×C16), C7⋊C8.3C4, C2.1(C8×D7), C14.1(C2×C8), (C4×D7).4C4, (C8×D7).3C2, C4.16(C4×D7), C28.21(C2×C4), SmallGroup(224,3)

Series: Derived Chief Lower central Upper central

C1C7 — D7×C16
C1C7C14C28C56C8×D7 — D7×C16
C7 — D7×C16
C1C16

Generators and relations for D7×C16
 G = < a,b,c | a16=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >

7C2
7C2
7C22
7C4
7C2×C4
7C8
7C2×C8
7C16
7C2×C16

Smallest permutation representation of D7×C16
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 75 96 107 47 49 28)(2 76 81 108 48 50 29)(3 77 82 109 33 51 30)(4 78 83 110 34 52 31)(5 79 84 111 35 53 32)(6 80 85 112 36 54 17)(7 65 86 97 37 55 18)(8 66 87 98 38 56 19)(9 67 88 99 39 57 20)(10 68 89 100 40 58 21)(11 69 90 101 41 59 22)(12 70 91 102 42 60 23)(13 71 92 103 43 61 24)(14 72 93 104 44 62 25)(15 73 94 105 45 63 26)(16 74 95 106 46 64 27)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 17)(15 18)(16 19)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 81)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 79)(62 80)(63 65)(64 66)(97 105)(98 106)(99 107)(100 108)(101 109)(102 110)(103 111)(104 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,96,107,47,49,28)(2,76,81,108,48,50,29)(3,77,82,109,33,51,30)(4,78,83,110,34,52,31)(5,79,84,111,35,53,32)(6,80,85,112,36,54,17)(7,65,86,97,37,55,18)(8,66,87,98,38,56,19)(9,67,88,99,39,57,20)(10,68,89,100,40,58,21)(11,69,90,101,41,59,22)(12,70,91,102,42,60,23)(13,71,92,103,43,61,24)(14,72,93,104,44,62,25)(15,73,94,105,45,63,26)(16,74,95,106,46,64,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,65)(64,66)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,96,107,47,49,28)(2,76,81,108,48,50,29)(3,77,82,109,33,51,30)(4,78,83,110,34,52,31)(5,79,84,111,35,53,32)(6,80,85,112,36,54,17)(7,65,86,97,37,55,18)(8,66,87,98,38,56,19)(9,67,88,99,39,57,20)(10,68,89,100,40,58,21)(11,69,90,101,41,59,22)(12,70,91,102,42,60,23)(13,71,92,103,43,61,24)(14,72,93,104,44,62,25)(15,73,94,105,45,63,26)(16,74,95,106,46,64,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,65)(64,66)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,75,96,107,47,49,28),(2,76,81,108,48,50,29),(3,77,82,109,33,51,30),(4,78,83,110,34,52,31),(5,79,84,111,35,53,32),(6,80,85,112,36,54,17),(7,65,86,97,37,55,18),(8,66,87,98,38,56,19),(9,67,88,99,39,57,20),(10,68,89,100,40,58,21),(11,69,90,101,41,59,22),(12,70,91,102,42,60,23),(13,71,92,103,43,61,24),(14,72,93,104,44,62,25),(15,73,94,105,45,63,26),(16,74,95,106,46,64,27)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,17),(15,18),(16,19),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,81),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,79),(62,80),(63,65),(64,66),(97,105),(98,106),(99,107),(100,108),(101,109),(102,110),(103,111),(104,112)]])

D7×C16 is a maximal subgroup of   C32⋊D7  D28.4C8  C16.12D14  D163D7  SD323D7  Q323D7
D7×C16 is a maximal quotient of   C32⋊D7  Dic7⋊C16  D14⋊C16

80 conjugacy classes

class 1 2A2B2C4A4B4C4D7A7B7C8A8B8C8D8E8F8G8H14A14B14C16A···16H16I···16P28A···28F56A···56L112A···112X
order122244447778888888814141416···1616···1628···2856···56112···112
size11771177222111177772221···17···72···22···22···2

80 irreducible representations

dim11111111122222
type++++++
imageC1C2C2C2C4C4C8C8C16D7D14C4×D7C8×D7D7×C16
kernelD7×C16C7⋊C16C112C8×D7C7⋊C8C4×D7Dic7D14D7C16C8C4C2C1
# reps11112244163361224

Matrix representation of D7×C16 in GL2(𝔽113) generated by

350
035
,
01
1129
,
0112
1120
G:=sub<GL(2,GF(113))| [35,0,0,35],[0,112,1,9],[0,112,112,0] >;

D7×C16 in GAP, Magma, Sage, TeX

D_7\times C_{16}
% in TeX

G:=Group("D7xC16");
// GroupNames label

G:=SmallGroup(224,3);
// by ID

G=gap.SmallGroup(224,3);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,31,50,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^16=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D7×C16 in TeX

׿
×
𝔽