direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C16, C112⋊4C2, D14.2C8, C8.19D14, Dic7.2C8, C56.19C22, C7⋊C16⋊6C2, C7⋊1(C2×C16), C7⋊C8.3C4, C2.1(C8×D7), C14.1(C2×C8), (C4×D7).4C4, (C8×D7).3C2, C4.16(C4×D7), C28.21(C2×C4), SmallGroup(224,3)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7×C16 |
Generators and relations for D7×C16
G = < a,b,c | a16=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 75 96 107 47 49 28)(2 76 81 108 48 50 29)(3 77 82 109 33 51 30)(4 78 83 110 34 52 31)(5 79 84 111 35 53 32)(6 80 85 112 36 54 17)(7 65 86 97 37 55 18)(8 66 87 98 38 56 19)(9 67 88 99 39 57 20)(10 68 89 100 40 58 21)(11 69 90 101 41 59 22)(12 70 91 102 42 60 23)(13 71 92 103 43 61 24)(14 72 93 104 44 62 25)(15 73 94 105 45 63 26)(16 74 95 106 46 64 27)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 17)(15 18)(16 19)(33 90)(34 91)(35 92)(36 93)(37 94)(38 95)(39 96)(40 81)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 79)(62 80)(63 65)(64 66)(97 105)(98 106)(99 107)(100 108)(101 109)(102 110)(103 111)(104 112)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,96,107,47,49,28)(2,76,81,108,48,50,29)(3,77,82,109,33,51,30)(4,78,83,110,34,52,31)(5,79,84,111,35,53,32)(6,80,85,112,36,54,17)(7,65,86,97,37,55,18)(8,66,87,98,38,56,19)(9,67,88,99,39,57,20)(10,68,89,100,40,58,21)(11,69,90,101,41,59,22)(12,70,91,102,42,60,23)(13,71,92,103,43,61,24)(14,72,93,104,44,62,25)(15,73,94,105,45,63,26)(16,74,95,106,46,64,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,65)(64,66)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,75,96,107,47,49,28)(2,76,81,108,48,50,29)(3,77,82,109,33,51,30)(4,78,83,110,34,52,31)(5,79,84,111,35,53,32)(6,80,85,112,36,54,17)(7,65,86,97,37,55,18)(8,66,87,98,38,56,19)(9,67,88,99,39,57,20)(10,68,89,100,40,58,21)(11,69,90,101,41,59,22)(12,70,91,102,42,60,23)(13,71,92,103,43,61,24)(14,72,93,104,44,62,25)(15,73,94,105,45,63,26)(16,74,95,106,46,64,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,17)(15,18)(16,19)(33,90)(34,91)(35,92)(36,93)(37,94)(38,95)(39,96)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,65)(64,66)(97,105)(98,106)(99,107)(100,108)(101,109)(102,110)(103,111)(104,112) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,75,96,107,47,49,28),(2,76,81,108,48,50,29),(3,77,82,109,33,51,30),(4,78,83,110,34,52,31),(5,79,84,111,35,53,32),(6,80,85,112,36,54,17),(7,65,86,97,37,55,18),(8,66,87,98,38,56,19),(9,67,88,99,39,57,20),(10,68,89,100,40,58,21),(11,69,90,101,41,59,22),(12,70,91,102,42,60,23),(13,71,92,103,43,61,24),(14,72,93,104,44,62,25),(15,73,94,105,45,63,26),(16,74,95,106,46,64,27)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,17),(15,18),(16,19),(33,90),(34,91),(35,92),(36,93),(37,94),(38,95),(39,96),(40,81),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,79),(62,80),(63,65),(64,66),(97,105),(98,106),(99,107),(100,108),(101,109),(102,110),(103,111),(104,112)]])
D7×C16 is a maximal subgroup of
C32⋊D7 D28.4C8 C16.12D14 D16⋊3D7 SD32⋊3D7 Q32⋊3D7
D7×C16 is a maximal quotient of C32⋊D7 Dic7⋊C16 D14⋊C16
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 14A | 14B | 14C | 16A | ··· | 16H | 16I | ··· | 16P | 28A | ··· | 28F | 56A | ··· | 56L | 112A | ··· | 112X |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 16 | ··· | 16 | 16 | ··· | 16 | 28 | ··· | 28 | 56 | ··· | 56 | 112 | ··· | 112 |
size | 1 | 1 | 7 | 7 | 1 | 1 | 7 | 7 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 2 | 2 | 2 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | D7 | D14 | C4×D7 | C8×D7 | D7×C16 |
kernel | D7×C16 | C7⋊C16 | C112 | C8×D7 | C7⋊C8 | C4×D7 | Dic7 | D14 | D7 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 16 | 3 | 3 | 6 | 12 | 24 |
Matrix representation of D7×C16 ►in GL2(𝔽113) generated by
35 | 0 |
0 | 35 |
0 | 1 |
112 | 9 |
0 | 112 |
112 | 0 |
G:=sub<GL(2,GF(113))| [35,0,0,35],[0,112,1,9],[0,112,112,0] >;
D7×C16 in GAP, Magma, Sage, TeX
D_7\times C_{16}
% in TeX
G:=Group("D7xC16");
// GroupNames label
G:=SmallGroup(224,3);
// by ID
G=gap.SmallGroup(224,3);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,31,50,69,6917]);
// Polycyclic
G:=Group<a,b,c|a^16=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export