metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C16⋊3D7, D14.C8, C112⋊5C2, Dic7.C8, C7⋊1M5(2), C8.20D14, C56.20C22, C7⋊C16⋊4C2, C7⋊C8.2C4, C2.3(C8×D7), C14.2(C2×C8), (C4×D7).2C4, (C8×D7).2C2, C4.17(C4×D7), C28.22(C2×C4), SmallGroup(224,4)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C16⋊D7
G = < a,b,c | a16=b7=c2=1, ab=ba, cac=a9, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 69 18 61 44 94)(2 109 70 19 62 45 95)(3 110 71 20 63 46 96)(4 111 72 21 64 47 81)(5 112 73 22 49 48 82)(6 97 74 23 50 33 83)(7 98 75 24 51 34 84)(8 99 76 25 52 35 85)(9 100 77 26 53 36 86)(10 101 78 27 54 37 87)(11 102 79 28 55 38 88)(12 103 80 29 56 39 89)(13 104 65 30 57 40 90)(14 105 66 31 58 41 91)(15 106 67 32 59 42 92)(16 107 68 17 60 43 93)
(1 94)(2 87)(3 96)(4 89)(5 82)(6 91)(7 84)(8 93)(9 86)(10 95)(11 88)(12 81)(13 90)(14 83)(15 92)(16 85)(17 25)(19 27)(21 29)(23 31)(33 105)(34 98)(35 107)(36 100)(37 109)(38 102)(39 111)(40 104)(41 97)(42 106)(43 99)(44 108)(45 101)(46 110)(47 103)(48 112)(49 73)(50 66)(51 75)(52 68)(53 77)(54 70)(55 79)(56 72)(57 65)(58 74)(59 67)(60 76)(61 69)(62 78)(63 71)(64 80)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,69,18,61,44,94)(2,109,70,19,62,45,95)(3,110,71,20,63,46,96)(4,111,72,21,64,47,81)(5,112,73,22,49,48,82)(6,97,74,23,50,33,83)(7,98,75,24,51,34,84)(8,99,76,25,52,35,85)(9,100,77,26,53,36,86)(10,101,78,27,54,37,87)(11,102,79,28,55,38,88)(12,103,80,29,56,39,89)(13,104,65,30,57,40,90)(14,105,66,31,58,41,91)(15,106,67,32,59,42,92)(16,107,68,17,60,43,93), (1,94)(2,87)(3,96)(4,89)(5,82)(6,91)(7,84)(8,93)(9,86)(10,95)(11,88)(12,81)(13,90)(14,83)(15,92)(16,85)(17,25)(19,27)(21,29)(23,31)(33,105)(34,98)(35,107)(36,100)(37,109)(38,102)(39,111)(40,104)(41,97)(42,106)(43,99)(44,108)(45,101)(46,110)(47,103)(48,112)(49,73)(50,66)(51,75)(52,68)(53,77)(54,70)(55,79)(56,72)(57,65)(58,74)(59,67)(60,76)(61,69)(62,78)(63,71)(64,80)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,69,18,61,44,94)(2,109,70,19,62,45,95)(3,110,71,20,63,46,96)(4,111,72,21,64,47,81)(5,112,73,22,49,48,82)(6,97,74,23,50,33,83)(7,98,75,24,51,34,84)(8,99,76,25,52,35,85)(9,100,77,26,53,36,86)(10,101,78,27,54,37,87)(11,102,79,28,55,38,88)(12,103,80,29,56,39,89)(13,104,65,30,57,40,90)(14,105,66,31,58,41,91)(15,106,67,32,59,42,92)(16,107,68,17,60,43,93), (1,94)(2,87)(3,96)(4,89)(5,82)(6,91)(7,84)(8,93)(9,86)(10,95)(11,88)(12,81)(13,90)(14,83)(15,92)(16,85)(17,25)(19,27)(21,29)(23,31)(33,105)(34,98)(35,107)(36,100)(37,109)(38,102)(39,111)(40,104)(41,97)(42,106)(43,99)(44,108)(45,101)(46,110)(47,103)(48,112)(49,73)(50,66)(51,75)(52,68)(53,77)(54,70)(55,79)(56,72)(57,65)(58,74)(59,67)(60,76)(61,69)(62,78)(63,71)(64,80) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,69,18,61,44,94),(2,109,70,19,62,45,95),(3,110,71,20,63,46,96),(4,111,72,21,64,47,81),(5,112,73,22,49,48,82),(6,97,74,23,50,33,83),(7,98,75,24,51,34,84),(8,99,76,25,52,35,85),(9,100,77,26,53,36,86),(10,101,78,27,54,37,87),(11,102,79,28,55,38,88),(12,103,80,29,56,39,89),(13,104,65,30,57,40,90),(14,105,66,31,58,41,91),(15,106,67,32,59,42,92),(16,107,68,17,60,43,93)], [(1,94),(2,87),(3,96),(4,89),(5,82),(6,91),(7,84),(8,93),(9,86),(10,95),(11,88),(12,81),(13,90),(14,83),(15,92),(16,85),(17,25),(19,27),(21,29),(23,31),(33,105),(34,98),(35,107),(36,100),(37,109),(38,102),(39,111),(40,104),(41,97),(42,106),(43,99),(44,108),(45,101),(46,110),(47,103),(48,112),(49,73),(50,66),(51,75),(52,68),(53,77),(54,70),(55,79),(56,72),(57,65),(58,74),(59,67),(60,76),(61,69),(62,78),(63,71),(64,80)]])
C16⋊D7 is a maximal subgroup of
D28.4C8 D7×M5(2) C16.12D14 D8⋊D14 D112⋊C2 SD32⋊D7 Q32⋊D7
C16⋊D7 is a maximal quotient of Dic7⋊C16 C112⋊9C4 D14⋊C16
68 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 14A | 14B | 14C | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 28A | ··· | 28F | 56A | ··· | 56L | 112A | ··· | 112X |
order | 1 | 2 | 2 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 28 | ··· | 28 | 56 | ··· | 56 | 112 | ··· | 112 |
size | 1 | 1 | 14 | 1 | 1 | 14 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | C8 | D7 | D14 | M5(2) | C4×D7 | C8×D7 | C16⋊D7 |
kernel | C16⋊D7 | C7⋊C16 | C112 | C8×D7 | C7⋊C8 | C4×D7 | Dic7 | D14 | C16 | C8 | C7 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 3 | 3 | 4 | 6 | 12 | 24 |
Matrix representation of C16⋊D7 ►in GL2(𝔽41) generated by
9 | 10 |
11 | 32 |
36 | 14 |
40 | 19 |
22 | 32 |
40 | 19 |
G:=sub<GL(2,GF(41))| [9,11,10,32],[36,40,14,19],[22,40,32,19] >;
C16⋊D7 in GAP, Magma, Sage, TeX
C_{16}\rtimes D_7
% in TeX
G:=Group("C16:D7");
// GroupNames label
G:=SmallGroup(224,4);
// by ID
G=gap.SmallGroup(224,4);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,31,50,69,6917]);
// Polycyclic
G:=Group<a,b,c|a^16=b^7=c^2=1,a*b=b*a,c*a*c=a^9,c*b*c=b^-1>;
// generators/relations
Export