direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C42, C28⋊5(C2×C4), (C4×C28)⋊8C2, C7⋊1(C2×C42), Dic7⋊5(C2×C4), D14.7(C2×C4), (C2×C4).95D14, (C4×Dic7)⋊17C2, C14.2(C22×C4), (C2×C14).12C23, C22.9(C22×D7), (C2×C28).109C22, (C2×Dic7).45C22, (C22×D7).32C22, C2.1(C2×C4×D7), (C2×C4×D7).11C2, SmallGroup(224,66)
Series: Derived ►Chief ►Lower central ►Upper central
| C7 — D7×C42 |
Generators and relations for D7×C42
G = < a,b,c,d | a4=b4=c7=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 342 in 108 conjugacy classes, 69 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C23, D7, C14, C42, C42, C22×C4, Dic7, C28, D14, C2×C14, C2×C42, C4×D7, C2×Dic7, C2×C28, C22×D7, C4×Dic7, C4×C28, C2×C4×D7, D7×C42
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C42, C22×C4, D14, C2×C42, C4×D7, C22×D7, C2×C4×D7, D7×C42
(1 69 13 62)(2 70 14 63)(3 64 8 57)(4 65 9 58)(5 66 10 59)(6 67 11 60)(7 68 12 61)(15 78 22 71)(16 79 23 72)(17 80 24 73)(18 81 25 74)(19 82 26 75)(20 83 27 76)(21 84 28 77)(29 92 36 85)(30 93 37 86)(31 94 38 87)(32 95 39 88)(33 96 40 89)(34 97 41 90)(35 98 42 91)(43 106 50 99)(44 107 51 100)(45 108 52 101)(46 109 53 102)(47 110 54 103)(48 111 55 104)(49 112 56 105)
(1 55 20 41)(2 56 21 42)(3 50 15 36)(4 51 16 37)(5 52 17 38)(6 53 18 39)(7 54 19 40)(8 43 22 29)(9 44 23 30)(10 45 24 31)(11 46 25 32)(12 47 26 33)(13 48 27 34)(14 49 28 35)(57 106 71 92)(58 107 72 93)(59 108 73 94)(60 109 74 95)(61 110 75 96)(62 111 76 97)(63 112 77 98)(64 99 78 85)(65 100 79 86)(66 101 80 87)(67 102 81 88)(68 103 82 89)(69 104 83 90)(70 105 84 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 17)(9 16)(10 15)(11 21)(12 20)(13 19)(14 18)(29 52)(30 51)(31 50)(32 56)(33 55)(34 54)(35 53)(36 45)(37 44)(38 43)(39 49)(40 48)(41 47)(42 46)(57 80)(58 79)(59 78)(60 84)(61 83)(62 82)(63 81)(64 73)(65 72)(66 71)(67 77)(68 76)(69 75)(70 74)(85 108)(86 107)(87 106)(88 112)(89 111)(90 110)(91 109)(92 101)(93 100)(94 99)(95 105)(96 104)(97 103)(98 102)
G:=sub<Sym(112)| (1,69,13,62)(2,70,14,63)(3,64,8,57)(4,65,9,58)(5,66,10,59)(6,67,11,60)(7,68,12,61)(15,78,22,71)(16,79,23,72)(17,80,24,73)(18,81,25,74)(19,82,26,75)(20,83,27,76)(21,84,28,77)(29,92,36,85)(30,93,37,86)(31,94,38,87)(32,95,39,88)(33,96,40,89)(34,97,41,90)(35,98,42,91)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105), (1,55,20,41)(2,56,21,42)(3,50,15,36)(4,51,16,37)(5,52,17,38)(6,53,18,39)(7,54,19,40)(8,43,22,29)(9,44,23,30)(10,45,24,31)(11,46,25,32)(12,47,26,33)(13,48,27,34)(14,49,28,35)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(29,52)(30,51)(31,50)(32,56)(33,55)(34,54)(35,53)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,80)(58,79)(59,78)(60,84)(61,83)(62,82)(63,81)(64,73)(65,72)(66,71)(67,77)(68,76)(69,75)(70,74)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102)>;
G:=Group( (1,69,13,62)(2,70,14,63)(3,64,8,57)(4,65,9,58)(5,66,10,59)(6,67,11,60)(7,68,12,61)(15,78,22,71)(16,79,23,72)(17,80,24,73)(18,81,25,74)(19,82,26,75)(20,83,27,76)(21,84,28,77)(29,92,36,85)(30,93,37,86)(31,94,38,87)(32,95,39,88)(33,96,40,89)(34,97,41,90)(35,98,42,91)(43,106,50,99)(44,107,51,100)(45,108,52,101)(46,109,53,102)(47,110,54,103)(48,111,55,104)(49,112,56,105), (1,55,20,41)(2,56,21,42)(3,50,15,36)(4,51,16,37)(5,52,17,38)(6,53,18,39)(7,54,19,40)(8,43,22,29)(9,44,23,30)(10,45,24,31)(11,46,25,32)(12,47,26,33)(13,48,27,34)(14,49,28,35)(57,106,71,92)(58,107,72,93)(59,108,73,94)(60,109,74,95)(61,110,75,96)(62,111,76,97)(63,112,77,98)(64,99,78,85)(65,100,79,86)(66,101,80,87)(67,102,81,88)(68,103,82,89)(69,104,83,90)(70,105,84,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,17)(9,16)(10,15)(11,21)(12,20)(13,19)(14,18)(29,52)(30,51)(31,50)(32,56)(33,55)(34,54)(35,53)(36,45)(37,44)(38,43)(39,49)(40,48)(41,47)(42,46)(57,80)(58,79)(59,78)(60,84)(61,83)(62,82)(63,81)(64,73)(65,72)(66,71)(67,77)(68,76)(69,75)(70,74)(85,108)(86,107)(87,106)(88,112)(89,111)(90,110)(91,109)(92,101)(93,100)(94,99)(95,105)(96,104)(97,103)(98,102) );
G=PermutationGroup([[(1,69,13,62),(2,70,14,63),(3,64,8,57),(4,65,9,58),(5,66,10,59),(6,67,11,60),(7,68,12,61),(15,78,22,71),(16,79,23,72),(17,80,24,73),(18,81,25,74),(19,82,26,75),(20,83,27,76),(21,84,28,77),(29,92,36,85),(30,93,37,86),(31,94,38,87),(32,95,39,88),(33,96,40,89),(34,97,41,90),(35,98,42,91),(43,106,50,99),(44,107,51,100),(45,108,52,101),(46,109,53,102),(47,110,54,103),(48,111,55,104),(49,112,56,105)], [(1,55,20,41),(2,56,21,42),(3,50,15,36),(4,51,16,37),(5,52,17,38),(6,53,18,39),(7,54,19,40),(8,43,22,29),(9,44,23,30),(10,45,24,31),(11,46,25,32),(12,47,26,33),(13,48,27,34),(14,49,28,35),(57,106,71,92),(58,107,72,93),(59,108,73,94),(60,109,74,95),(61,110,75,96),(62,111,76,97),(63,112,77,98),(64,99,78,85),(65,100,79,86),(66,101,80,87),(67,102,81,88),(68,103,82,89),(69,104,83,90),(70,105,84,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,17),(9,16),(10,15),(11,21),(12,20),(13,19),(14,18),(29,52),(30,51),(31,50),(32,56),(33,55),(34,54),(35,53),(36,45),(37,44),(38,43),(39,49),(40,48),(41,47),(42,46),(57,80),(58,79),(59,78),(60,84),(61,83),(62,82),(63,81),(64,73),(65,72),(66,71),(67,77),(68,76),(69,75),(70,74),(85,108),(86,107),(87,106),(88,112),(89,111),(90,110),(91,109),(92,101),(93,100),(94,99),(95,105),(96,104),(97,103),(98,102)]])
D7×C42 is a maximal subgroup of
C42.282D14 C42.182D14 Dic7.C42 C42.200D14 C42.202D14 C28⋊M4(2) C42.188D14 C42.93D14 C42.228D14 C42.229D14 C42.232D14 C42.131D14 C42.233D14 C42.234D14 C42.236D14 C42.237D14 C42.189D14 C42.238D14 C42.240D14 C42.241D14
D7×C42 is a maximal quotient of
Dic7.5C42 Dic7⋊C42 D14⋊C42 D14.C42 Dic7.C42 D14.4C42
80 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4L | 4M | ··· | 4X | 7A | 7B | 7C | 14A | ··· | 14I | 28A | ··· | 28AJ |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
| size | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
80 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | C4 | D7 | D14 | C4×D7 |
| kernel | D7×C42 | C4×Dic7 | C4×C28 | C2×C4×D7 | C4×D7 | C42 | C2×C4 | C4 |
| # reps | 1 | 3 | 1 | 3 | 24 | 3 | 9 | 36 |
Matrix representation of D7×C42 ►in GL3(𝔽29) generated by
| 1 | 0 | 0 |
| 0 | 17 | 0 |
| 0 | 0 | 17 |
| 17 | 0 | 0 |
| 0 | 28 | 0 |
| 0 | 0 | 28 |
| 1 | 0 | 0 |
| 0 | 0 | 1 |
| 0 | 28 | 18 |
| 1 | 0 | 0 |
| 0 | 0 | 28 |
| 0 | 28 | 0 |
G:=sub<GL(3,GF(29))| [1,0,0,0,17,0,0,0,17],[17,0,0,0,28,0,0,0,28],[1,0,0,0,0,28,0,1,18],[1,0,0,0,0,28,0,28,0] >;
D7×C42 in GAP, Magma, Sage, TeX
D_7\times C_4^2
% in TeX
G:=Group("D7xC4^2"); // GroupNames label
G:=SmallGroup(224,66);
// by ID
G=gap.SmallGroup(224,66);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,50,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^7=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations