Extensions 1→N→G→Q→1 with N=D14 and Q=C2×C4

Direct product G=N×Q with N=D14 and Q=C2×C4
dρLabelID
D7×C22×C4112D7xC2^2xC4224,175

Semidirect products G=N:Q with N=D14 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D141(C2×C4) = C4×D28φ: C2×C4/C4C2 ⊆ Out D14112D14:1(C2xC4)224,68
D142(C2×C4) = Dic74D4φ: C2×C4/C4C2 ⊆ Out D14112D14:2(C2xC4)224,76
D143(C2×C4) = D28⋊C4φ: C2×C4/C4C2 ⊆ Out D14112D14:3(C2xC4)224,88
D144(C2×C4) = C4×C7⋊D4φ: C2×C4/C4C2 ⊆ Out D14112D14:4(C2xC4)224,123
D145(C2×C4) = D7×C22⋊C4φ: C2×C4/C22C2 ⊆ Out D1456D14:5(C2xC4)224,75
D146(C2×C4) = C2×D14⋊C4φ: C2×C4/C22C2 ⊆ Out D14112D14:6(C2xC4)224,122

Non-split extensions G=N.Q with N=D14 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D14.1(C2×C4) = D28.2C4φ: C2×C4/C4C2 ⊆ Out D141122D14.1(C2xC4)224,96
D14.2(C2×C4) = D28.C4φ: C2×C4/C4C2 ⊆ Out D141124D14.2(C2xC4)224,102
D14.3(C2×C4) = C42⋊D7φ: C2×C4/C22C2 ⊆ Out D14112D14.3(C2xC4)224,67
D14.4(C2×C4) = C4⋊C47D7φ: C2×C4/C22C2 ⊆ Out D14112D14.4(C2xC4)224,87
D14.5(C2×C4) = C2×C8⋊D7φ: C2×C4/C22C2 ⊆ Out D14112D14.5(C2xC4)224,95
D14.6(C2×C4) = D7×M4(2)φ: C2×C4/C22C2 ⊆ Out D14564D14.6(C2xC4)224,101
D14.7(C2×C4) = D7×C42φ: trivial image112D14.7(C2xC4)224,66
D14.8(C2×C4) = D7×C4⋊C4φ: trivial image112D14.8(C2xC4)224,86
D14.9(C2×C4) = D7×C2×C8φ: trivial image112D14.9(C2xC4)224,94

׿
×
𝔽