Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×D7

Direct product G=N×Q with N=C2 and Q=C2×C4×D7
dρLabelID
D7×C22×C4112D7xC2^2xC4224,175


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×D7
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×D7) = D7×C42central extension (φ=1)112C2.1(C2xC4xD7)224,66
C2.2(C2×C4×D7) = D7×C2×C8central extension (φ=1)112C2.2(C2xC4xD7)224,94
C2.3(C2×C4×D7) = C2×C4×Dic7central extension (φ=1)224C2.3(C2xC4xD7)224,117
C2.4(C2×C4×D7) = C4×Dic14central stem extension (φ=1)224C2.4(C2xC4xD7)224,63
C2.5(C2×C4×D7) = C42⋊D7central stem extension (φ=1)112C2.5(C2xC4xD7)224,67
C2.6(C2×C4×D7) = C4×D28central stem extension (φ=1)112C2.6(C2xC4xD7)224,68
C2.7(C2×C4×D7) = C23.11D14central stem extension (φ=1)112C2.7(C2xC4xD7)224,72
C2.8(C2×C4×D7) = D7×C22⋊C4central stem extension (φ=1)56C2.8(C2xC4xD7)224,75
C2.9(C2×C4×D7) = Dic74D4central stem extension (φ=1)112C2.9(C2xC4xD7)224,76
C2.10(C2×C4×D7) = Dic73Q8central stem extension (φ=1)224C2.10(C2xC4xD7)224,82
C2.11(C2×C4×D7) = D7×C4⋊C4central stem extension (φ=1)112C2.11(C2xC4xD7)224,86
C2.12(C2×C4×D7) = C4⋊C47D7central stem extension (φ=1)112C2.12(C2xC4xD7)224,87
C2.13(C2×C4×D7) = D28⋊C4central stem extension (φ=1)112C2.13(C2xC4xD7)224,88
C2.14(C2×C4×D7) = C2×C8⋊D7central stem extension (φ=1)112C2.14(C2xC4xD7)224,95
C2.15(C2×C4×D7) = D28.2C4central stem extension (φ=1)1122C2.15(C2xC4xD7)224,96
C2.16(C2×C4×D7) = D7×M4(2)central stem extension (φ=1)564C2.16(C2xC4xD7)224,101
C2.17(C2×C4×D7) = D28.C4central stem extension (φ=1)1124C2.17(C2xC4xD7)224,102
C2.18(C2×C4×D7) = C2×Dic7⋊C4central stem extension (φ=1)224C2.18(C2xC4xD7)224,118
C2.19(C2×C4×D7) = C2×D14⋊C4central stem extension (φ=1)112C2.19(C2xC4xD7)224,122
C2.20(C2×C4×D7) = C4×C7⋊D4central stem extension (φ=1)112C2.20(C2xC4xD7)224,123

׿
×
𝔽