Extensions 1→N→G→Q→1 with N=C5×Q8 and Q=S3

Direct product G=N×Q with N=C5×Q8 and Q=S3
dρLabelID
C5×S3×Q81204C5xS3xQ8240,171

Semidirect products G=N:Q with N=C5×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Q8)⋊1S3 = Q8⋊D15φ: S3/C1S3 ⊆ Out C5×Q8404+(C5xQ8):1S3240,106
(C5×Q8)⋊2S3 = C5×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C5×Q8402(C5xQ8):2S3240,103
(C5×Q8)⋊3S3 = Q82D15φ: S3/C3C2 ⊆ Out C5×Q81204+(C5xQ8):3S3240,78
(C5×Q8)⋊4S3 = Q8×D15φ: S3/C3C2 ⊆ Out C5×Q81204-(C5xQ8):4S3240,181
(C5×Q8)⋊5S3 = Q83D15φ: S3/C3C2 ⊆ Out C5×Q81204+(C5xQ8):5S3240,182
(C5×Q8)⋊6S3 = C5×Q82S3φ: S3/C3C2 ⊆ Out C5×Q81204(C5xQ8):6S3240,62
(C5×Q8)⋊7S3 = C5×Q83S3φ: trivial image1204(C5xQ8):7S3240,172

Non-split extensions G=N.Q with N=C5×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Q8).1S3 = Q8.D15φ: S3/C1S3 ⊆ Out C5×Q8804-(C5xQ8).1S3240,105
(C5×Q8).2S3 = C5×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C5×Q8802(C5xQ8).2S3240,102
(C5×Q8).3S3 = C157Q16φ: S3/C3C2 ⊆ Out C5×Q82404-(C5xQ8).3S3240,79
(C5×Q8).4S3 = C5×C3⋊Q16φ: S3/C3C2 ⊆ Out C5×Q82404(C5xQ8).4S3240,63

׿
×
𝔽