Copied to
clipboard

G = Q8⋊D15order 240 = 24·3·5

The semidirect product of Q8 and D15 acting via D15/C5=S3

non-abelian, soluble

Aliases: Q8⋊D15, C10.2S4, C5⋊GL2(𝔽3), SL2(𝔽3)⋊D5, C2.3(C5⋊S4), (C5×Q8)⋊1S3, (C5×SL2(𝔽3))⋊1C2, SmallGroup(240,106)

Series: Derived Chief Lower central Upper central

C1C2Q8C5×SL2(𝔽3) — Q8⋊D15
C1C2Q8C5×Q8C5×SL2(𝔽3) — Q8⋊D15
C5×SL2(𝔽3) — Q8⋊D15
C1C2

Generators and relations for Q8⋊D15
 G = < a,b,c,d | a4=c15=d2=1, b2=a2, bab-1=a-1, cac-1=b, dad=a-1b, cbc-1=ab, dbd=a2b, dcd=c-1 >

60C2
4C3
3C4
30C22
4C6
20S3
20S3
12D5
4C15
15D4
15C8
20D6
3C20
6D10
4D15
4D15
4C30
15SD16
3D20
3C52C8
4D30
5GL2(𝔽3)
3Q8⋊D5

Character table of Q8⋊D15

 class 12A2B345A5B68A8B10A10B15A15B15C15D20A20B30A30B30C30D
 size 116086228303022888812128888
ρ11111111111111111111111    trivial
ρ211-111111-1-1111111111111    linear of order 2
ρ3220-1222-10022-1-1-1-122-1-1-1-1    orthogonal lifted from S3
ρ422022-1+5/2-1-5/2200-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ522022-1-5/2-1+5/2200-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ6220-12-1+5/2-1-5/2-100-1+5/2-1-5/23ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ554-1+5/2-1-5/232ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ533ζ5253    orthogonal lifted from D15
ρ7220-12-1-5/2-1+5/2-100-1-5/2-1+5/23ζ543ζ55432ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ5252-1-5/2-1+5/23ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ554    orthogonal lifted from D15
ρ8220-12-1-5/2-1+5/2-100-1-5/2-1+5/232ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ533ζ5253-1-5/2-1+5/2ζ3ζ533ζ52523ζ533ζ52533ζ543ζ55432ζ5432ζ554    orthogonal lifted from D15
ρ9220-12-1+5/2-1-5/2-100-1+5/2-1-5/2ζ3ζ533ζ52523ζ533ζ52533ζ543ζ55432ζ5432ζ554-1+5/2-1-5/23ζ543ζ55432ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ5252    orthogonal lifted from D15
ρ102-20-10221--2-2-2-2-1-1-1-1001111    complex lifted from GL2(𝔽3)
ρ112-20-10221-2--2-2-2-1-1-1-1001111    complex lifted from GL2(𝔽3)
ρ1233-10-133011330000-1-10000    orthogonal lifted from S4
ρ133310-1330-1-1330000-1-10000    orthogonal lifted from S4
ρ144-401044-100-4-4111100-1-1-1-1    orthogonal lifted from GL2(𝔽3)
ρ154-40-20-1+5-1-52001-51+51+5/21+5/21-5/21-5/200-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal faithful, Schur index 2
ρ164-40-20-1-5-1+52001+51-51-5/21-5/21+5/21+5/200-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal faithful, Schur index 2
ρ174-4010-1+5-1-5-1001-51+5ζ3ζ533ζ52533ζ533ζ52523ζ543ζ5532ζ5432ζ550032ζ5432ζ5543ζ543ζ554ζ3ζ533ζ52523ζ533ζ5253    orthogonal faithful
ρ184-4010-1-5-1+5-1001+51-532ζ5432ζ553ζ543ζ55ζ3ζ533ζ52533ζ533ζ5252003ζ533ζ5253ζ3ζ533ζ525232ζ5432ζ5543ζ543ζ554    orthogonal faithful
ρ194-4010-1+5-1-5-1001-51+53ζ533ζ5252ζ3ζ533ζ525332ζ5432ζ553ζ543ζ55003ζ543ζ55432ζ5432ζ5543ζ533ζ5253ζ3ζ533ζ5252    orthogonal faithful
ρ204-4010-1-5-1+5-1001+51-53ζ543ζ5532ζ5432ζ553ζ533ζ5252ζ3ζ533ζ525300ζ3ζ533ζ52523ζ533ζ52533ζ543ζ55432ζ5432ζ554    orthogonal faithful
ρ216600-2-3-35/2-3+35/2000-3-35/2-3+35/200001+5/21-5/20000    orthogonal lifted from C5⋊S4
ρ226600-2-3+35/2-3-35/2000-3+35/2-3-35/200001-5/21+5/20000    orthogonal lifted from C5⋊S4

Smallest permutation representation of Q8⋊D15
On 40 points
Generators in S40
(1 39 6 23)(2 30 7 14)(3 36 8 20)(4 27 9 11)(5 33 10 17)(12 22 28 38)(13 34 29 18)(15 25 31 26)(16 37 32 21)(19 40 35 24)
(1 29 6 13)(2 35 7 19)(3 26 8 25)(4 32 9 16)(5 38 10 22)(11 21 27 37)(12 33 28 17)(14 24 30 40)(15 36 31 20)(18 39 34 23)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 2)(3 5)(6 7)(8 10)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)(21 27)(22 26)(23 40)(24 39)(25 38)

G:=sub<Sym(40)| (1,39,6,23)(2,30,7,14)(3,36,8,20)(4,27,9,11)(5,33,10,17)(12,22,28,38)(13,34,29,18)(15,25,31,26)(16,37,32,21)(19,40,35,24), (1,29,6,13)(2,35,7,19)(3,26,8,25)(4,32,9,16)(5,38,10,22)(11,21,27,37)(12,33,28,17)(14,24,30,40)(15,36,31,20)(18,39,34,23), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,2)(3,5)(6,7)(8,10)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,40)(24,39)(25,38)>;

G:=Group( (1,39,6,23)(2,30,7,14)(3,36,8,20)(4,27,9,11)(5,33,10,17)(12,22,28,38)(13,34,29,18)(15,25,31,26)(16,37,32,21)(19,40,35,24), (1,29,6,13)(2,35,7,19)(3,26,8,25)(4,32,9,16)(5,38,10,22)(11,21,27,37)(12,33,28,17)(14,24,30,40)(15,36,31,20)(18,39,34,23), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,2)(3,5)(6,7)(8,10)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)(21,27)(22,26)(23,40)(24,39)(25,38) );

G=PermutationGroup([[(1,39,6,23),(2,30,7,14),(3,36,8,20),(4,27,9,11),(5,33,10,17),(12,22,28,38),(13,34,29,18),(15,25,31,26),(16,37,32,21),(19,40,35,24)], [(1,29,6,13),(2,35,7,19),(3,26,8,25),(4,32,9,16),(5,38,10,22),(11,21,27,37),(12,33,28,17),(14,24,30,40),(15,36,31,20),(18,39,34,23)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,2),(3,5),(6,7),(8,10),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28),(21,27),(22,26),(23,40),(24,39),(25,38)]])

Q8⋊D15 is a maximal subgroup of   Dic5.7S4  GL2(𝔽3)⋊D5  D10.2S4  D5×GL2(𝔽3)  Q8.D30  C20.6S4  C20.3S4
Q8⋊D15 is a maximal quotient of   Q8⋊Dic15

Matrix representation of Q8⋊D15 in GL4(𝔽241) generated by

1000
0100
00157114
002984
,
1000
0100
00113212
0083128
,
6621000
12412800
00211157
0012829
,
823000
18123300
00238134
001693
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,157,29,0,0,114,84],[1,0,0,0,0,1,0,0,0,0,113,83,0,0,212,128],[66,124,0,0,210,128,0,0,0,0,211,128,0,0,157,29],[8,181,0,0,230,233,0,0,0,0,238,169,0,0,134,3] >;

Q8⋊D15 in GAP, Magma, Sage, TeX

Q_8\rtimes D_{15}
% in TeX

G:=Group("Q8:D15");
// GroupNames label

G:=SmallGroup(240,106);
// by ID

G=gap.SmallGroup(240,106);
# by ID

G:=PCGroup([6,-2,-3,-5,-2,2,-2,49,434,1443,2169,117,904,1360,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^15=d^2=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d=a^-1*b,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8⋊D15 in TeX
Character table of Q8⋊D15 in TeX

׿
×
𝔽