direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5×Q8⋊2S3, C30.49D4, C20.38D6, C15⋊15SD16, D12.2C10, C60.45C22, C3⋊C8⋊3C10, Q8⋊2(C5×S3), (C5×Q8)⋊6S3, C6.9(C5×D4), C3⋊3(C5×SD16), C4.3(S3×C10), (C3×Q8)⋊1C10, (Q8×C15)⋊7C2, C12.3(C2×C10), (C5×D12).4C2, C10.25(C3⋊D4), (C5×C3⋊C8)⋊10C2, C2.6(C5×C3⋊D4), SmallGroup(240,62)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×Q8⋊2S3
G = < a,b,c,d,e | a5=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=d-1 >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 26 58 66)(2 27 59 67)(3 28 60 68)(4 29 56 69)(5 30 57 70)(6 20 90 52)(7 16 86 53)(8 17 87 54)(9 18 88 55)(10 19 89 51)(11 98 48 111)(12 99 49 112)(13 100 50 113)(14 96 46 114)(15 97 47 115)(21 75 93 107)(22 71 94 108)(23 72 95 109)(24 73 91 110)(25 74 92 106)(31 76 43 63)(32 77 44 64)(33 78 45 65)(34 79 41 61)(35 80 42 62)(36 118 103 81)(37 119 104 82)(38 120 105 83)(39 116 101 84)(40 117 102 85)
(1 118 58 81)(2 119 59 82)(3 120 60 83)(4 116 56 84)(5 117 57 85)(6 24 90 91)(7 25 86 92)(8 21 87 93)(9 22 88 94)(10 23 89 95)(11 65 48 78)(12 61 49 79)(13 62 50 80)(14 63 46 76)(15 64 47 77)(16 106 53 74)(17 107 54 75)(18 108 55 71)(19 109 51 72)(20 110 52 73)(26 36 66 103)(27 37 67 104)(28 38 68 105)(29 39 69 101)(30 40 70 102)(31 96 43 114)(32 97 44 115)(33 98 45 111)(34 99 41 112)(35 100 42 113)
(1 33 90)(2 34 86)(3 35 87)(4 31 88)(5 32 89)(6 58 45)(7 59 41)(8 60 42)(9 56 43)(10 57 44)(11 73 36)(12 74 37)(13 75 38)(14 71 39)(15 72 40)(16 67 61)(17 68 62)(18 69 63)(19 70 64)(20 66 65)(21 83 113)(22 84 114)(23 85 115)(24 81 111)(25 82 112)(26 78 52)(27 79 53)(28 80 54)(29 76 55)(30 77 51)(46 108 101)(47 109 102)(48 110 103)(49 106 104)(50 107 105)(91 118 98)(92 119 99)(93 120 100)(94 116 96)(95 117 97)
(6 45)(7 41)(8 42)(9 43)(10 44)(11 24)(12 25)(13 21)(14 22)(15 23)(16 79)(17 80)(18 76)(19 77)(20 78)(26 66)(27 67)(28 68)(29 69)(30 70)(31 88)(32 89)(33 90)(34 86)(35 87)(36 81)(37 82)(38 83)(39 84)(40 85)(46 94)(47 95)(48 91)(49 92)(50 93)(51 64)(52 65)(53 61)(54 62)(55 63)(71 114)(72 115)(73 111)(74 112)(75 113)(96 108)(97 109)(98 110)(99 106)(100 107)(101 116)(102 117)(103 118)(104 119)(105 120)
G:=sub<Sym(120)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,26,58,66)(2,27,59,67)(3,28,60,68)(4,29,56,69)(5,30,57,70)(6,20,90,52)(7,16,86,53)(8,17,87,54)(9,18,88,55)(10,19,89,51)(11,98,48,111)(12,99,49,112)(13,100,50,113)(14,96,46,114)(15,97,47,115)(21,75,93,107)(22,71,94,108)(23,72,95,109)(24,73,91,110)(25,74,92,106)(31,76,43,63)(32,77,44,64)(33,78,45,65)(34,79,41,61)(35,80,42,62)(36,118,103,81)(37,119,104,82)(38,120,105,83)(39,116,101,84)(40,117,102,85), (1,118,58,81)(2,119,59,82)(3,120,60,83)(4,116,56,84)(5,117,57,85)(6,24,90,91)(7,25,86,92)(8,21,87,93)(9,22,88,94)(10,23,89,95)(11,65,48,78)(12,61,49,79)(13,62,50,80)(14,63,46,76)(15,64,47,77)(16,106,53,74)(17,107,54,75)(18,108,55,71)(19,109,51,72)(20,110,52,73)(26,36,66,103)(27,37,67,104)(28,38,68,105)(29,39,69,101)(30,40,70,102)(31,96,43,114)(32,97,44,115)(33,98,45,111)(34,99,41,112)(35,100,42,113), (1,33,90)(2,34,86)(3,35,87)(4,31,88)(5,32,89)(6,58,45)(7,59,41)(8,60,42)(9,56,43)(10,57,44)(11,73,36)(12,74,37)(13,75,38)(14,71,39)(15,72,40)(16,67,61)(17,68,62)(18,69,63)(19,70,64)(20,66,65)(21,83,113)(22,84,114)(23,85,115)(24,81,111)(25,82,112)(26,78,52)(27,79,53)(28,80,54)(29,76,55)(30,77,51)(46,108,101)(47,109,102)(48,110,103)(49,106,104)(50,107,105)(91,118,98)(92,119,99)(93,120,100)(94,116,96)(95,117,97), (6,45)(7,41)(8,42)(9,43)(10,44)(11,24)(12,25)(13,21)(14,22)(15,23)(16,79)(17,80)(18,76)(19,77)(20,78)(26,66)(27,67)(28,68)(29,69)(30,70)(31,88)(32,89)(33,90)(34,86)(35,87)(36,81)(37,82)(38,83)(39,84)(40,85)(46,94)(47,95)(48,91)(49,92)(50,93)(51,64)(52,65)(53,61)(54,62)(55,63)(71,114)(72,115)(73,111)(74,112)(75,113)(96,108)(97,109)(98,110)(99,106)(100,107)(101,116)(102,117)(103,118)(104,119)(105,120)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,26,58,66)(2,27,59,67)(3,28,60,68)(4,29,56,69)(5,30,57,70)(6,20,90,52)(7,16,86,53)(8,17,87,54)(9,18,88,55)(10,19,89,51)(11,98,48,111)(12,99,49,112)(13,100,50,113)(14,96,46,114)(15,97,47,115)(21,75,93,107)(22,71,94,108)(23,72,95,109)(24,73,91,110)(25,74,92,106)(31,76,43,63)(32,77,44,64)(33,78,45,65)(34,79,41,61)(35,80,42,62)(36,118,103,81)(37,119,104,82)(38,120,105,83)(39,116,101,84)(40,117,102,85), (1,118,58,81)(2,119,59,82)(3,120,60,83)(4,116,56,84)(5,117,57,85)(6,24,90,91)(7,25,86,92)(8,21,87,93)(9,22,88,94)(10,23,89,95)(11,65,48,78)(12,61,49,79)(13,62,50,80)(14,63,46,76)(15,64,47,77)(16,106,53,74)(17,107,54,75)(18,108,55,71)(19,109,51,72)(20,110,52,73)(26,36,66,103)(27,37,67,104)(28,38,68,105)(29,39,69,101)(30,40,70,102)(31,96,43,114)(32,97,44,115)(33,98,45,111)(34,99,41,112)(35,100,42,113), (1,33,90)(2,34,86)(3,35,87)(4,31,88)(5,32,89)(6,58,45)(7,59,41)(8,60,42)(9,56,43)(10,57,44)(11,73,36)(12,74,37)(13,75,38)(14,71,39)(15,72,40)(16,67,61)(17,68,62)(18,69,63)(19,70,64)(20,66,65)(21,83,113)(22,84,114)(23,85,115)(24,81,111)(25,82,112)(26,78,52)(27,79,53)(28,80,54)(29,76,55)(30,77,51)(46,108,101)(47,109,102)(48,110,103)(49,106,104)(50,107,105)(91,118,98)(92,119,99)(93,120,100)(94,116,96)(95,117,97), (6,45)(7,41)(8,42)(9,43)(10,44)(11,24)(12,25)(13,21)(14,22)(15,23)(16,79)(17,80)(18,76)(19,77)(20,78)(26,66)(27,67)(28,68)(29,69)(30,70)(31,88)(32,89)(33,90)(34,86)(35,87)(36,81)(37,82)(38,83)(39,84)(40,85)(46,94)(47,95)(48,91)(49,92)(50,93)(51,64)(52,65)(53,61)(54,62)(55,63)(71,114)(72,115)(73,111)(74,112)(75,113)(96,108)(97,109)(98,110)(99,106)(100,107)(101,116)(102,117)(103,118)(104,119)(105,120) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,26,58,66),(2,27,59,67),(3,28,60,68),(4,29,56,69),(5,30,57,70),(6,20,90,52),(7,16,86,53),(8,17,87,54),(9,18,88,55),(10,19,89,51),(11,98,48,111),(12,99,49,112),(13,100,50,113),(14,96,46,114),(15,97,47,115),(21,75,93,107),(22,71,94,108),(23,72,95,109),(24,73,91,110),(25,74,92,106),(31,76,43,63),(32,77,44,64),(33,78,45,65),(34,79,41,61),(35,80,42,62),(36,118,103,81),(37,119,104,82),(38,120,105,83),(39,116,101,84),(40,117,102,85)], [(1,118,58,81),(2,119,59,82),(3,120,60,83),(4,116,56,84),(5,117,57,85),(6,24,90,91),(7,25,86,92),(8,21,87,93),(9,22,88,94),(10,23,89,95),(11,65,48,78),(12,61,49,79),(13,62,50,80),(14,63,46,76),(15,64,47,77),(16,106,53,74),(17,107,54,75),(18,108,55,71),(19,109,51,72),(20,110,52,73),(26,36,66,103),(27,37,67,104),(28,38,68,105),(29,39,69,101),(30,40,70,102),(31,96,43,114),(32,97,44,115),(33,98,45,111),(34,99,41,112),(35,100,42,113)], [(1,33,90),(2,34,86),(3,35,87),(4,31,88),(5,32,89),(6,58,45),(7,59,41),(8,60,42),(9,56,43),(10,57,44),(11,73,36),(12,74,37),(13,75,38),(14,71,39),(15,72,40),(16,67,61),(17,68,62),(18,69,63),(19,70,64),(20,66,65),(21,83,113),(22,84,114),(23,85,115),(24,81,111),(25,82,112),(26,78,52),(27,79,53),(28,80,54),(29,76,55),(30,77,51),(46,108,101),(47,109,102),(48,110,103),(49,106,104),(50,107,105),(91,118,98),(92,119,99),(93,120,100),(94,116,96),(95,117,97)], [(6,45),(7,41),(8,42),(9,43),(10,44),(11,24),(12,25),(13,21),(14,22),(15,23),(16,79),(17,80),(18,76),(19,77),(20,78),(26,66),(27,67),(28,68),(29,69),(30,70),(31,88),(32,89),(33,90),(34,86),(35,87),(36,81),(37,82),(38,83),(39,84),(40,85),(46,94),(47,95),(48,91),(49,92),(50,93),(51,64),(52,65),(53,61),(54,62),(55,63),(71,114),(72,115),(73,111),(74,112),(75,113),(96,108),(97,109),(98,110),(99,106),(100,107),(101,116),(102,117),(103,118),(104,119),(105,120)])
C5×Q8⋊2S3 is a maximal subgroup of
D20⋊D6 D15⋊SD16 D60⋊C22 D12.27D10 D20.14D6 D12.D10 D30.44D4 C5×S3×SD16
60 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 5A | 5B | 5C | 5D | 6 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 12A | 12B | 12C | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 30A | 30B | 30C | 30D | 40A | ··· | 40H | 60A | ··· | 60L |
order | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 40 | ··· | 40 | 60 | ··· | 60 |
size | 1 | 1 | 12 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | 6 | 6 | 1 | 1 | 1 | 1 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 6 | ··· | 6 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | S3 | D4 | D6 | SD16 | C3⋊D4 | C5×S3 | C5×D4 | S3×C10 | C5×SD16 | C5×C3⋊D4 | Q8⋊2S3 | C5×Q8⋊2S3 |
kernel | C5×Q8⋊2S3 | C5×C3⋊C8 | C5×D12 | Q8×C15 | Q8⋊2S3 | C3⋊C8 | D12 | C3×Q8 | C5×Q8 | C30 | C20 | C15 | C10 | Q8 | C6 | C4 | C3 | C2 | C5 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 1 | 4 |
Matrix representation of C5×Q8⋊2S3 ►in GL4(𝔽241) generated by
91 | 0 | 0 | 0 |
0 | 91 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 240 | 239 |
0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 38 |
0 | 0 | 19 | 0 |
240 | 1 | 0 | 0 |
240 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 240 | 240 |
G:=sub<GL(4,GF(241))| [91,0,0,0,0,91,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,240,1,0,0,239,1],[1,0,0,0,0,1,0,0,0,0,0,19,0,0,38,0],[240,240,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,240,0,0,0,240] >;
C5×Q8⋊2S3 in GAP, Magma, Sage, TeX
C_5\times Q_8\rtimes_2S_3
% in TeX
G:=Group("C5xQ8:2S3");
// GroupNames label
G:=SmallGroup(240,62);
// by ID
G=gap.SmallGroup(240,62);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-2,-3,265,247,1443,729,69,5765]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations
Export