Extensions 1→N→G→Q→1 with N=C22×D5 and Q=C6

Direct product G=N×Q with N=C22×D5 and Q=C6

Semidirect products G=N:Q with N=C22×D5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊C6 = C2×D5×A4φ: C6/C2C3 ⊆ Out C22×D5306+(C2^2xD5):C6240,198
(C22×D5)⋊2C6 = C6×D20φ: C6/C3C2 ⊆ Out C22×D5120(C2^2xD5):2C6240,157
(C22×D5)⋊3C6 = C3×D4×D5φ: C6/C3C2 ⊆ Out C22×D5604(C2^2xD5):3C6240,159
(C22×D5)⋊4C6 = C6×C5⋊D4φ: C6/C3C2 ⊆ Out C22×D5120(C2^2xD5):4C6240,164

Non-split extensions G=N.Q with N=C22×D5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C22×D5).C6 = A4×F5φ: C6/C1C6 ⊆ Out C22×D52012+(C2^2xD5).C6240,193
(C22×D5).2C6 = C3×D10⋊C4φ: C6/C3C2 ⊆ Out C22×D5120(C2^2xD5).2C6240,43
(C22×D5).3C6 = C3×C22⋊F5φ: C6/C3C2 ⊆ Out C22×D5604(C2^2xD5).3C6240,117
(C22×D5).4C6 = C2×C6×F5φ: C6/C3C2 ⊆ Out C22×D560(C2^2xD5).4C6240,200
(C22×D5).5C6 = D5×C2×C12φ: trivial image120(C2^2xD5).5C6240,156