Copied to
clipboard

G = C2xC6xF5order 240 = 24·3·5

Direct product of C2xC6 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xC6xF5, D10:3C12, C10:(C2xC12), D5:(C2xC12), C5:(C22xC12), C30:3(C2xC4), (C2xC30):4C4, (C6xD5):7C4, (C2xC10):4C12, C15:4(C22xC4), D5.(C22xC6), D10.7(C2xC6), (C3xD5).3C23, (C22xD5).4C6, (C6xD5).26C22, (D5xC2xC6).7C2, (C3xD5):5(C2xC4), SmallGroup(240,200)

Series: Derived Chief Lower central Upper central

C1C5 — C2xC6xF5
C1C5D5C3xD5C3xF5C6xF5 — C2xC6xF5
C5 — C2xC6xF5
C1C2xC6

Generators and relations for C2xC6xF5
 G = < a,b,c,d | a2=b6=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Subgroups: 284 in 108 conjugacy classes, 64 normal (14 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2xC4, C23, D5, D5, C10, C12, C2xC6, C2xC6, C15, C22xC4, F5, D10, C2xC10, C2xC12, C22xC6, C3xD5, C3xD5, C30, C2xF5, C22xD5, C22xC12, C3xF5, C6xD5, C2xC30, C22xF5, C6xF5, D5xC2xC6, C2xC6xF5
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, C23, C12, C2xC6, C22xC4, F5, C2xC12, C22xC6, C2xF5, C22xC12, C3xF5, C22xF5, C6xF5, C2xC6xF5

Smallest permutation representation of C2xC6xF5
On 60 points
Generators in S60
(1 59)(2 60)(3 55)(4 56)(5 57)(6 58)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 45)(14 46)(15 47)(16 48)(17 43)(18 44)(19 36)(20 31)(21 32)(22 33)(23 34)(24 35)(25 42)(26 37)(27 38)(28 39)(29 40)(30 41)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 43 37 49 36)(2 44 38 50 31)(3 45 39 51 32)(4 46 40 52 33)(5 47 41 53 34)(6 48 42 54 35)(7 19 59 17 26)(8 20 60 18 27)(9 21 55 13 28)(10 22 56 14 29)(11 23 57 15 30)(12 24 58 16 25)
(1 59)(2 60)(3 55)(4 56)(5 57)(6 58)(7 43 26 36)(8 44 27 31)(9 45 28 32)(10 46 29 33)(11 47 30 34)(12 48 25 35)(13 39 21 51)(14 40 22 52)(15 41 23 53)(16 42 24 54)(17 37 19 49)(18 38 20 50)

G:=sub<Sym(60)| (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,36)(20,31)(21,32)(22,33)(23,34)(24,35)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,43,37,49,36)(2,44,38,50,31)(3,45,39,51,32)(4,46,40,52,33)(5,47,41,53,34)(6,48,42,54,35)(7,19,59,17,26)(8,20,60,18,27)(9,21,55,13,28)(10,22,56,14,29)(11,23,57,15,30)(12,24,58,16,25), (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,43,26,36)(8,44,27,31)(9,45,28,32)(10,46,29,33)(11,47,30,34)(12,48,25,35)(13,39,21,51)(14,40,22,52)(15,41,23,53)(16,42,24,54)(17,37,19,49)(18,38,20,50)>;

G:=Group( (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,45)(14,46)(15,47)(16,48)(17,43)(18,44)(19,36)(20,31)(21,32)(22,33)(23,34)(24,35)(25,42)(26,37)(27,38)(28,39)(29,40)(30,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,43,37,49,36)(2,44,38,50,31)(3,45,39,51,32)(4,46,40,52,33)(5,47,41,53,34)(6,48,42,54,35)(7,19,59,17,26)(8,20,60,18,27)(9,21,55,13,28)(10,22,56,14,29)(11,23,57,15,30)(12,24,58,16,25), (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,43,26,36)(8,44,27,31)(9,45,28,32)(10,46,29,33)(11,47,30,34)(12,48,25,35)(13,39,21,51)(14,40,22,52)(15,41,23,53)(16,42,24,54)(17,37,19,49)(18,38,20,50) );

G=PermutationGroup([[(1,59),(2,60),(3,55),(4,56),(5,57),(6,58),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,45),(14,46),(15,47),(16,48),(17,43),(18,44),(19,36),(20,31),(21,32),(22,33),(23,34),(24,35),(25,42),(26,37),(27,38),(28,39),(29,40),(30,41)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,43,37,49,36),(2,44,38,50,31),(3,45,39,51,32),(4,46,40,52,33),(5,47,41,53,34),(6,48,42,54,35),(7,19,59,17,26),(8,20,60,18,27),(9,21,55,13,28),(10,22,56,14,29),(11,23,57,15,30),(12,24,58,16,25)], [(1,59),(2,60),(3,55),(4,56),(5,57),(6,58),(7,43,26,36),(8,44,27,31),(9,45,28,32),(10,46,29,33),(11,47,30,34),(12,48,25,35),(13,39,21,51),(14,40,22,52),(15,41,23,53),(16,42,24,54),(17,37,19,49),(18,38,20,50)]])

C2xC6xF5 is a maximal subgroup of   D10.20D12

60 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A···4H 5 6A···6F6G···6N10A10B10C12A···12P15A15B30A···30F
order12222222334···456···66···610101012···12151530···30
size11115555115···541···15···54445···5444···4

60 irreducible representations

dim11111111114444
type+++++
imageC1C2C2C3C4C4C6C6C12C12F5C2xF5C3xF5C6xF5
kernelC2xC6xF5C6xF5D5xC2xC6C22xF5C6xD5C2xC30C2xF5C22xD5D10C2xC10C2xC6C6C22C2
# reps1612621221241326

Matrix representation of C2xC6xF5 in GL6(F61)

100000
010000
0060000
0006000
0000600
0000060
,
1300000
0600000
0060000
0006000
0000600
0000060
,
100000
010000
0060606060
001000
000100
000010
,
5000000
0500000
0060000
0000060
0006000
001111

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[13,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,1,0,0,0,60,0,0,1,0,0,60,0,0,0],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,60,0,0,1,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,60,0,1] >;

C2xC6xF5 in GAP, Magma, Sage, TeX

C_2\times C_6\times F_5
% in TeX

G:=Group("C2xC6xF5");
// GroupNames label

G:=SmallGroup(240,200);
// by ID

G=gap.SmallGroup(240,200);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-5,144,3461,317]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<