Extensions 1→N→G→Q→1 with N=S3xC20 and Q=C2

Direct product G=NxQ with N=S3xC20 and Q=C2
dρLabelID
S3xC2xC20120S3xC2xC20240,166

Semidirect products G=N:Q with N=S3xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC20):1C2 = D20:5S3φ: C2/C1C2 ⊆ Out S3xC201204-(S3xC20):1C2240,126
(S3xC20):2C2 = D60:C2φ: C2/C1C2 ⊆ Out S3xC201204+(S3xC20):2C2240,130
(S3xC20):3C2 = S3xD20φ: C2/C1C2 ⊆ Out S3xC20604+(S3xC20):3C2240,137
(S3xC20):4C2 = D6.D10φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20):4C2240,132
(S3xC20):5C2 = C4xS3xD5φ: C2/C1C2 ⊆ Out S3xC20604(S3xC20):5C2240,135
(S3xC20):6C2 = C5xS3xD4φ: C2/C1C2 ⊆ Out S3xC20604(S3xC20):6C2240,169
(S3xC20):7C2 = C5xD4:2S3φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20):7C2240,170
(S3xC20):8C2 = C5xQ8:3S3φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20):8C2240,172
(S3xC20):9C2 = C5xC4oD12φ: C2/C1C2 ⊆ Out S3xC201202(S3xC20):9C2240,168

Non-split extensions G=N.Q with N=S3xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC20).1C2 = S3xDic10φ: C2/C1C2 ⊆ Out S3xC201204-(S3xC20).1C2240,128
(S3xC20).2C2 = S3xC5:2C8φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20).2C2240,8
(S3xC20).3C2 = D6.Dic5φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20).3C2240,11
(S3xC20).4C2 = C5xS3xQ8φ: C2/C1C2 ⊆ Out S3xC201204(S3xC20).4C2240,171
(S3xC20).5C2 = C5xC8:S3φ: C2/C1C2 ⊆ Out S3xC201202(S3xC20).5C2240,50
(S3xC20).6C2 = S3xC40φ: trivial image1202(S3xC20).6C2240,49

׿
x
:
Z
F
o
wr
Q
<