Extensions 1→N→G→Q→1 with N=S3×C20 and Q=C2

Direct product G=N×Q with N=S3×C20 and Q=C2
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=S3×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C20)⋊1C2 = D205S3φ: C2/C1C2 ⊆ Out S3×C201204-(S3xC20):1C2240,126
(S3×C20)⋊2C2 = D60⋊C2φ: C2/C1C2 ⊆ Out S3×C201204+(S3xC20):2C2240,130
(S3×C20)⋊3C2 = S3×D20φ: C2/C1C2 ⊆ Out S3×C20604+(S3xC20):3C2240,137
(S3×C20)⋊4C2 = D6.D10φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20):4C2240,132
(S3×C20)⋊5C2 = C4×S3×D5φ: C2/C1C2 ⊆ Out S3×C20604(S3xC20):5C2240,135
(S3×C20)⋊6C2 = C5×S3×D4φ: C2/C1C2 ⊆ Out S3×C20604(S3xC20):6C2240,169
(S3×C20)⋊7C2 = C5×D42S3φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20):7C2240,170
(S3×C20)⋊8C2 = C5×Q83S3φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20):8C2240,172
(S3×C20)⋊9C2 = C5×C4○D12φ: C2/C1C2 ⊆ Out S3×C201202(S3xC20):9C2240,168

Non-split extensions G=N.Q with N=S3×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C20).1C2 = S3×Dic10φ: C2/C1C2 ⊆ Out S3×C201204-(S3xC20).1C2240,128
(S3×C20).2C2 = S3×C52C8φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20).2C2240,8
(S3×C20).3C2 = D6.Dic5φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20).3C2240,11
(S3×C20).4C2 = C5×S3×Q8φ: C2/C1C2 ⊆ Out S3×C201204(S3xC20).4C2240,171
(S3×C20).5C2 = C5×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C201202(S3xC20).5C2240,50
(S3×C20).6C2 = S3×C40φ: trivial image1202(S3xC20).6C2240,49

׿
×
𝔽