Extensions 1→N→G→Q→1 with N=C10×Dic3 and Q=C2

Direct product G=N×Q with N=C10×Dic3 and Q=C2
dρLabelID
Dic3×C2×C10240Dic3xC2xC10240,173

Semidirect products G=N:Q with N=C10×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×Dic3)⋊1C2 = D10⋊Dic3φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):1C2240,26
(C10×Dic3)⋊2C2 = D304C4φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):2C2240,28
(C10×Dic3)⋊3C2 = C2×D5×Dic3φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):3C2240,139
(C10×Dic3)⋊4C2 = Dic5.D6φ: C2/C1C2 ⊆ Out C10×Dic31204(C10xDic3):4C2240,140
(C10×Dic3)⋊5C2 = C2×D30.C2φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):5C2240,144
(C10×Dic3)⋊6C2 = C2×C3⋊D20φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):6C2240,146
(C10×Dic3)⋊7C2 = C5×D6⋊C4φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):7C2240,59
(C10×Dic3)⋊8C2 = C5×C6.D4φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):8C2240,64
(C10×Dic3)⋊9C2 = C5×D42S3φ: C2/C1C2 ⊆ Out C10×Dic31204(C10xDic3):9C2240,170
(C10×Dic3)⋊10C2 = C10×C3⋊D4φ: C2/C1C2 ⊆ Out C10×Dic3120(C10xDic3):10C2240,174
(C10×Dic3)⋊11C2 = S3×C2×C20φ: trivial image120(C10xDic3):11C2240,166

Non-split extensions G=N.Q with N=C10×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10×Dic3).1C2 = Dic3×Dic5φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).1C2240,25
(C10×Dic3).2C2 = C30.Q8φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).2C2240,29
(C10×Dic3).3C2 = Dic155C4φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).3C2240,30
(C10×Dic3).4C2 = C6.Dic10φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).4C2240,31
(C10×Dic3).5C2 = C2×C15⋊Q8φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).5C2240,148
(C10×Dic3).6C2 = C5×Dic3⋊C4φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).6C2240,57
(C10×Dic3).7C2 = C5×C4⋊Dic3φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).7C2240,58
(C10×Dic3).8C2 = C10×Dic6φ: C2/C1C2 ⊆ Out C10×Dic3240(C10xDic3).8C2240,165
(C10×Dic3).9C2 = Dic3×C20φ: trivial image240(C10xDic3).9C2240,56

׿
×
𝔽