Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic5

Direct product G=N×Q with N=C6 and Q=C2×Dic5
dρLabelID
C2×C6×Dic5240C2xC6xDic5240,163

Semidirect products G=N:Q with N=C6 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic5) = C2×S3×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C6120C6:1(C2xDic5)240,142
C62(C2×Dic5) = C22×Dic15φ: C2×Dic5/C2×C10C2 ⊆ Aut C6240C6:2(C2xDic5)240,183

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic5) = S3×C52C8φ: C2×Dic5/Dic5C2 ⊆ Aut C61204C6.1(C2xDic5)240,8
C6.2(C2×Dic5) = D6.Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C61204C6.2(C2xDic5)240,11
C6.3(C2×Dic5) = Dic3×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C6240C6.3(C2xDic5)240,25
C6.4(C2×Dic5) = D6⋊Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C6120C6.4(C2xDic5)240,27
C6.5(C2×Dic5) = C6.Dic10φ: C2×Dic5/Dic5C2 ⊆ Aut C6240C6.5(C2xDic5)240,31
C6.6(C2×Dic5) = C2×C153C8φ: C2×Dic5/C2×C10C2 ⊆ Aut C6240C6.6(C2xDic5)240,70
C6.7(C2×Dic5) = C60.7C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C61202C6.7(C2xDic5)240,71
C6.8(C2×Dic5) = C4×Dic15φ: C2×Dic5/C2×C10C2 ⊆ Aut C6240C6.8(C2xDic5)240,72
C6.9(C2×Dic5) = C605C4φ: C2×Dic5/C2×C10C2 ⊆ Aut C6240C6.9(C2xDic5)240,74
C6.10(C2×Dic5) = C30.38D4φ: C2×Dic5/C2×C10C2 ⊆ Aut C6120C6.10(C2xDic5)240,80
C6.11(C2×Dic5) = C6×C52C8central extension (φ=1)240C6.11(C2xDic5)240,38
C6.12(C2×Dic5) = C3×C4.Dic5central extension (φ=1)1202C6.12(C2xDic5)240,39
C6.13(C2×Dic5) = C12×Dic5central extension (φ=1)240C6.13(C2xDic5)240,40
C6.14(C2×Dic5) = C3×C4⋊Dic5central extension (φ=1)240C6.14(C2xDic5)240,42
C6.15(C2×Dic5) = C3×C23.D5central extension (φ=1)120C6.15(C2xDic5)240,48

׿
×
𝔽