Copied to
clipboard

G = C3×C27⋊C3order 243 = 35

Direct product of C3 and C27⋊C3

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C3×C27⋊C3, C27⋊C32, C9.3C33, C33.3C9, (C3×C27)⋊4C3, (C3×C9).6C9, C9.4(C3×C9), C3.6(C32×C9), C32.17(C3×C9), (C32×C9).13C3, (C3×C9).27C32, SmallGroup(243,49)

Series: Derived Chief Lower central Upper central Jennings

C1C3 — C3×C27⋊C3
C1C3C9C3×C9C32×C9 — C3×C27⋊C3
C1C3 — C3×C27⋊C3
C1C3×C9 — C3×C27⋊C3
C1C3C3C3C3C3C3C9C9 — C3×C27⋊C3

Generators and relations for C3×C27⋊C3
 G = < a,b,c | a3=b27=c3=1, ab=ba, ac=ca, cbc-1=b10 >

Subgroups: 72 in 60 conjugacy classes, 54 normal (8 characteristic)
C1, C3, C3, C3, C9, C9, C32, C32, C32, C27, C3×C9, C3×C9, C33, C3×C27, C27⋊C3, C32×C9, C3×C27⋊C3
Quotients: C1, C3, C9, C32, C3×C9, C33, C27⋊C3, C32×C9, C3×C27⋊C3

Smallest permutation representation of C3×C27⋊C3
On 81 points
Generators in S81
(1 54 71)(2 28 72)(3 29 73)(4 30 74)(5 31 75)(6 32 76)(7 33 77)(8 34 78)(9 35 79)(10 36 80)(11 37 81)(12 38 55)(13 39 56)(14 40 57)(15 41 58)(16 42 59)(17 43 60)(18 44 61)(19 45 62)(20 46 63)(21 47 64)(22 48 65)(23 49 66)(24 50 67)(25 51 68)(26 52 69)(27 53 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(2 20 11)(3 12 21)(5 23 14)(6 15 24)(8 26 17)(9 18 27)(28 46 37)(29 38 47)(31 49 40)(32 41 50)(34 52 43)(35 44 53)(55 64 73)(57 75 66)(58 67 76)(60 78 69)(61 70 79)(63 81 72)

G:=sub<Sym(81)| (1,54,71)(2,28,72)(3,29,73)(4,30,74)(5,31,75)(6,32,76)(7,33,77)(8,34,78)(9,35,79)(10,36,80)(11,37,81)(12,38,55)(13,39,56)(14,40,57)(15,41,58)(16,42,59)(17,43,60)(18,44,61)(19,45,62)(20,46,63)(21,47,64)(22,48,65)(23,49,66)(24,50,67)(25,51,68)(26,52,69)(27,53,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,46,37)(29,38,47)(31,49,40)(32,41,50)(34,52,43)(35,44,53)(55,64,73)(57,75,66)(58,67,76)(60,78,69)(61,70,79)(63,81,72)>;

G:=Group( (1,54,71)(2,28,72)(3,29,73)(4,30,74)(5,31,75)(6,32,76)(7,33,77)(8,34,78)(9,35,79)(10,36,80)(11,37,81)(12,38,55)(13,39,56)(14,40,57)(15,41,58)(16,42,59)(17,43,60)(18,44,61)(19,45,62)(20,46,63)(21,47,64)(22,48,65)(23,49,66)(24,50,67)(25,51,68)(26,52,69)(27,53,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (2,20,11)(3,12,21)(5,23,14)(6,15,24)(8,26,17)(9,18,27)(28,46,37)(29,38,47)(31,49,40)(32,41,50)(34,52,43)(35,44,53)(55,64,73)(57,75,66)(58,67,76)(60,78,69)(61,70,79)(63,81,72) );

G=PermutationGroup([[(1,54,71),(2,28,72),(3,29,73),(4,30,74),(5,31,75),(6,32,76),(7,33,77),(8,34,78),(9,35,79),(10,36,80),(11,37,81),(12,38,55),(13,39,56),(14,40,57),(15,41,58),(16,42,59),(17,43,60),(18,44,61),(19,45,62),(20,46,63),(21,47,64),(22,48,65),(23,49,66),(24,50,67),(25,51,68),(26,52,69),(27,53,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(2,20,11),(3,12,21),(5,23,14),(6,15,24),(8,26,17),(9,18,27),(28,46,37),(29,38,47),(31,49,40),(32,41,50),(34,52,43),(35,44,53),(55,64,73),(57,75,66),(58,67,76),(60,78,69),(61,70,79),(63,81,72)]])

C3×C27⋊C3 is a maximal subgroup of   C33.5D9

99 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9AD27A···27BB
order13···33···39···99···927···27
size11···13···31···13···33···3

99 irreducible representations

dim1111113
type+
imageC1C3C3C3C9C9C27⋊C3
kernelC3×C27⋊C3C3×C27C27⋊C3C32×C9C3×C9C33C3
# reps1618248618

Matrix representation of C3×C27⋊C3 in GL4(𝔽109) generated by

45000
06300
00630
00063
,
27000
045440
0636445
042460
,
63000
0100
045450
064063
G:=sub<GL(4,GF(109))| [45,0,0,0,0,63,0,0,0,0,63,0,0,0,0,63],[27,0,0,0,0,45,63,42,0,44,64,46,0,0,45,0],[63,0,0,0,0,1,45,64,0,0,45,0,0,0,0,63] >;

C3×C27⋊C3 in GAP, Magma, Sage, TeX

C_3\times C_{27}\rtimes C_3
% in TeX

G:=Group("C3xC27:C3");
// GroupNames label

G:=SmallGroup(243,49);
// by ID

G=gap.SmallGroup(243,49);
# by ID

G:=PCGroup([5,-3,3,3,-3,-3,135,841,78]);
// Polycyclic

G:=Group<a,b,c|a^3=b^27=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations

׿
×
𝔽